NR4A orphan nuclear receptor signalling in skeletal muscle: Evidence for crosstalk with the beta-adrenergic pathway. (2007–2009)

Abstract:
The NR4A subgroup of are 'orphan' members of the nuclear hormone receptor (NR) superfamily (that are all implicated in human disease). NRs are hormone-dependent DNA binding proteins that translate nutritional and pathophysiological signals into gene regulation. The importance of this 'drugable' gene family in the context of promoting and maintaining human health is underscored by the diversity of medicinals associated with dysfunctional hormone signalling, in the context of inflammation, diabetes, dyslipidemia, and endocrine disorders (e.g ~15% of the top selling therapeutic compounds target NRs). The NR4A subgroup are stress response genes which are induced by a wide range of physiological stimuli and have been implicated in the response to energy excess (over-eating) and diet induced obesity. The NR4A subgroup are expressed in skeletal muscle, a major mass peripheral tissue that accounts for ~40% of the body mass and energy expenditure. This lean tissue is a major site of fat oxidation, insulin-stimulated glucose utilization and cholesterol metabolism. Therefore this tissue plays a notable role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, muscle has a significant role in the progression of dyslipidemia, diabetes and obesity. Surprisingly, the function of the NR4A subgroup in skeletal muscle metabolism has not been examined. Nevertheless, given the data on NR4A mediated gene regulation, and the potential therapeutic utility for the treatment of metabolic disease, the contribution of skeletal muscle to NR4A action must be defined. Correspondingly, the objective of this proposal is to examine the role of the NR4A subgroup and is relevant to understanding the basis of dyslipidemia and obesity.
Grant type:
NHMRC Project Grant
Funded by:
National Health and Medical Research Council