Inhibitors Of West Nile Virus Protease As Antiviral Drugs (2007–2009)

Abstract:
The West Nile Virus (WNV) was first isolated from a woman in the West Nile region of Uganda in 1937. It is one of ~70 known flaviviruses (e.g. Dengue fever, Yellow fever, West Nile, Kunjun, Japanese encephalitis, St. Louis encephalitis, tick-borne encephalitis, Australian encephalitis and the related hepatitis C virus) which annually infect hundreds of millions of people worldwide, particularly in tropical and sub-tropical areas, and cause major public health problems. WNV is endemic in people in the Middle East, parts of Africa and Europe, but recent epidemics in Israel (1998), Romania (1996), United States (1999), and UK (2003), that have been traced to migratory birds, were characterized by severe symptoms , severe neurological pathology, and fatalities. In the USA alone there were 4,156 infections and 284 deaths in 2002, 9122 infections and 223 deaths in 2003, and this mosquito borne virus has quickly spread since 1999 through all USA states and into Canada and Mexico (http://www.cdc.gov/ncidod/dvbid/ westnile/index.htm). No treatments or vaccines are available. This project focuses on a viral enzyme, known as the West Nile Virus NS3 protease, that is essential for replication of the virus. By studying the enzyme in the laboratory we can design small molecules that block its function and these are potential leads for developing drug treatments for people infected, not only by this virus but potentially also other flaviviruses. A precedent is the success of inhibitors of HIV-1 protease that are the most effective treatment for humans with HIV-infections, and other viral proteases are now becoming recognized as viable antiviral targets for pharmaceutical development. The project involves experts on small molecule protease inhibitor design and development, proteases, and virology including West Nile virology. We expect to generate new information at the cutting edge of West Nile Virus and flavivirus research and promising new antiviral drug candidates.
Grant type:
NHMRC Project Grant
Researchers:
  • NHMRC Leadership Fellow and Group L
    Institute for Molecular Bioscience
  • Professor, Research Development
    Office of the Deputy Vice-Chancellor (Research and Innovation)
    Affiliate Professor
    Australian Institute for Bioengineering and Nanotechnology
  • Professor
    School of Chemistry and Molecular Biosciences
    Faculty of Science
Funded by:
National Health and Medical Research Council