Determination of the mechanisms of action of a cytomegalovirus chemokine receptor homologue in pathogenesis (2007–2009)

A number of herpesviruses encode proteins that are similar to proteins of our immune system. These pirated proteins are exploited by the virus to enable it to replicate and persist in the infected individual, usually by evading or gaining advantage from the normal immune response. This project will investigate the role of one such protein found in both human and animal herpesviruses (specifically cytomegaloviruses (CMV)) that is conserved with cellular cell surface proteins (receptors) that bind immune signaling molecules (chemokines). Chemokines are important proteins in the early response to infection. Binding of chemokines to their receptors initiates a cascade of signals within the cell that has profound effects on cellular responses to environmental stimuli. Thus, it is believed that herpesviruses have acquired chemokine receptors to modify or react to the immune response, causing infected cells to behave abnormally either despite or in response to chemokine signals. This project will determine how this CMV specific protein affects the function of cells that CMV infects and how this may promote virus replication, dissemination and persistence in infected hosts. We will also engineer CMVs where the activity of the target protein can be inhibited by administration of prototype antiviral drugs. If inhibition of the activity of the protein is found to reduce virus replication, dissemination or persistence, then this will demonstrate that this type of protein would be a suitable target for the development of novel drugs active against CMV infections. CMV can cause serious (potentially life threatening) disease in newborn children (following infection in the uterus) and immunosuppressed people (eg. organ transplant recipients and people with HIV/AIDS). Our studies will improve our understanding of the contribution of a specific CMV protein to disease, thereby assisting efforts to reduce the impact of CMV infections.
Grant type:
NHMRC Project Grant
  • Senior Research Officer
    School of Chemistry and Molecular Biosciences
    Faculty of Science
Funded by:
National Health and Medical Research Council