Associate Professor Mark Kendrick

Associate Professor - Geochemistry

School of Earth and Environmental Sciences
Faculty of Science
m.kendrick@uq.edu.au
+61 7 336 53454

Overview

I use geochemistry to investigate the roles of fluids and volatiles in geological processes stretching from the Earth's surface to the deep mantle. I am particularly interested in hydrothermal alteration, metasomatism/metamorphism and magmatism. The common link between these areas, and the aim of my recent research, has been to investigate the longterm exchange of volatiles between the Earth's surface and mantle reservoirs, stretching from the seafloor, through subduction zones and into the mantle. I participated in Expedition 360 of the International Ocean Discovery Program in 2016, to the slow-spreading Atlantis Bank core complex on the SW Indian Ridge, where I acted as shipboard geochemist and crossed the equator by boat for the first time. I have long standing interests in fluid inclusions as tiny recorders of past fluid activity and special interests in the halogen and noble gas groups of elements.

I moved to UQ in 2019 from the Australian National University where I was a continuing Fellow and had held an ARC Future Fellowship. Prior to that I had an ARC QEII Fellowship at the University of Melbourne (2008-2013) and postdoctoral appointments at the University of Melbourne (2004-2008) and the Geological Survey of Norway (2001-2003). I did my PhD at the University of Manchester (2001) and undergraduate studies in Geology at the University of Edinburgh (1996).

Research Impacts

Fluids enable the exchange of volatiles between the Earth's surface and mantle reservoirs, which has significant implications for the evolution of our planet, it's habitibility and climate. Hydrothermal fluids also form economically important ore deposits.

Investigating the origin of ore forming fluids can impact exploration strategies. For example, fingerprinting if ore forming fluids are related to magmatic activity or the former presence of evaporitic salt, helps delimit which areas are prospective for different metals. I wrote a chapter summarising halogen and noble gas constraints on fluid sources and acquisition of salinity in the Noble Gases as Geochemical Tracers.

My most important (and shortest) contributions to the fundamental process of global volatile (re)cycling are Kendrick et al., 2011 and Kendrick et al., 2017. I wrote a review of the behaviour of halogens in altered oceanic lithosphere in The Role of Halogens in Terrestrial and Extraterrestrial Processes.

Qualifications

  • Bachelor of Science, University of Edinburgh
  • Doctor of Philosophy, The University of Manchester

Publications

View all Publications

Available Projects

  • The nature of fluids responsible for alteration of the oceanic crust (seawater versus magmatic) and the volatile content of the oceanic crust that is subducted into the mantle exert critical controls on the recycling of elements from the Earth's surface to the mantle. This study will use cutting edge techniques to investigate all four halogens (F, Cl, Br and I) in altered ocean crust recovered by seafloor drilling. This is important because halogens are the dominant ligands that enable metal transport in hydrothermal solution and bromine and iodine are essential elements for life, but there abundances in oceanic crust are poorly known. A combination of in situ and bulk analyses will be used to link the behaviour of halogens to other trace elements and fluid chemistry, and to provide new information about hydrothermal mineralisation and geochemical cycling of elements in the oceanic crust.

  • Alteration of the oceanic crust controls the composition of seawater and the slab that is subducted into the mantle. It was traditionally assumed that most alteration occurs close to the spreading axis; however, low temperature alteration could influence oceanic crust intermitently throughout its life cycle. This project will characterise alteration in drill cores recovered from the W Pacific and W Atlantic using a range of techniques including SEM and electron microprobe and then investigate the timing of the alteration processes via newly developed U-Pb carbonate dating as well as U-Pb titanite and 40Ar-39Ar geochronology.

  • Tungsten or boron isotopes in backarc basin basalts, will provide information about the nature of mantle components underlying SW Pacific backarc basins. Previous work suggests these include depleted mantle wedge, subducted components (fluids and melts) and primitive mantle components with high 3He/4He ratios that probably formed early in Earth's history and are expected to have tungsten isotope anomalies. This project is in partnership with Monash University.

View all Available Projects

Publications

Book Chapter

  • Kendrick, Mark A. (2018). Argon. In (pp. 53-55) : Springer Netherlands.

  • Kendrick, Mark A. (2018). Chlorine. In (pp. 241-244) : Springer Netherlands.

  • Kendrick, Mark A. and Burnard, Pete (2013). Noble gases and halogens in fluid inclusions: A journey through the earth’s crust. In The Noble Gases as Geochemical Tracers (pp. 319-369) : Springer Berlin Heidelberg. doi:10.1007/978-3-642-28836-4_10

Journal Article

Conference Publication

Possible Research Projects

Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.

  • The nature of fluids responsible for alteration of the oceanic crust (seawater versus magmatic) and the volatile content of the oceanic crust that is subducted into the mantle exert critical controls on the recycling of elements from the Earth's surface to the mantle. This study will use cutting edge techniques to investigate all four halogens (F, Cl, Br and I) in altered ocean crust recovered by seafloor drilling. This is important because halogens are the dominant ligands that enable metal transport in hydrothermal solution and bromine and iodine are essential elements for life, but there abundances in oceanic crust are poorly known. A combination of in situ and bulk analyses will be used to link the behaviour of halogens to other trace elements and fluid chemistry, and to provide new information about hydrothermal mineralisation and geochemical cycling of elements in the oceanic crust.

  • Alteration of the oceanic crust controls the composition of seawater and the slab that is subducted into the mantle. It was traditionally assumed that most alteration occurs close to the spreading axis; however, low temperature alteration could influence oceanic crust intermitently throughout its life cycle. This project will characterise alteration in drill cores recovered from the W Pacific and W Atlantic using a range of techniques including SEM and electron microprobe and then investigate the timing of the alteration processes via newly developed U-Pb carbonate dating as well as U-Pb titanite and 40Ar-39Ar geochronology.

  • Tungsten or boron isotopes in backarc basin basalts, will provide information about the nature of mantle components underlying SW Pacific backarc basins. Previous work suggests these include depleted mantle wedge, subducted components (fluids and melts) and primitive mantle components with high 3He/4He ratios that probably formed early in Earth's history and are expected to have tungsten isotope anomalies. This project is in partnership with Monash University.

  • A historical assumption was that volatiles, including noble gases, are almost entirely lost from subducting slabs during metamorphism. However, few studies have quantified the volatile content of eclogite facies lithologies, which is an essential step towards constraining the actual subduction budget. The current project will involve collection of samples from an eclogite terrane such as New Caledonia and characterisation of samples representing dehydrated oceanic crust and metasediments. The aims are to assess the extent to which noble gases and halogens are retained in eclogitic rocks during metamorphism and the degree to which they exchange between adjacent lithologies, which is of additional interest because crustally-derived 'excess 40Ar' is an obstacle to geochronological studies. The project will use a variety of techniques including petrography, fluid inclusion microthermometry, LA-ICPMS and novel 40Ar-39Ar methodologies to measure halogens and noble gases with great precision.

  • The relative abundances of different elements in the Bulk Earth provide important clues about how the Earth condensed and accreted in the early solar system (e.g. birth of planets). Most previous studies have suggested halogens are depleted on Earth compared to other elements of similar volatility, implying early loss of halogens by erosion of halogen-rich crustal materials (e.g. collisional erosion) from the young Earth of partitioning into the core. However, this view was challenged by a recent suggestion that halogens have a much lower abundance in the solar system than previously estimated. This study will further explore the findings of Clay et al. by detailed petrographic examination and analysis of halogens in world class examples of major chondritic meteorite types. Electron microprobe and SHRIMP will be used for in situ F and Cl measurements and bulk analyses of Cl, Br and I will be obtained by the noble gas method, which provides uniquely high precision for Br and I measurement and is only possible in a couple of laboratories globally.