Professor Simon Cool

Professor & Director of UQ Advance

School of Chemical Engineering
Faculty of Engineering, Architecture and Information Technology
s.cool@uq.edu.au
+61 7 336 54175

Overview

Professor Simon Cool is Professor of Bioengineering and Director of the UQ Advanced Cell Therapy Manufacturing Initiative in the School of Chemical Engineering at the University of Queensland.

Professor Cool began his scientific career at the University of Queensland more than 20 years ago. He received his BSc (hons) and PhD degrees from the University of Queensland, where he subsequently held a faculty position in the School of Biomedical Sciences. His areas of studies have included age-related changes in the structure of bone and teeth and the extracellular matrix compartment of skeletal tissue that guide stem cell behaviour and wound repair. Professor Cool was invited to join the Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore in 2003 as a Principal Investigator. He then joined A*STAR’s Institute of Medical Biology (IMB) in 2008, shortly after its inception, to further his research in regenerative medicine, serving as Senior Principal Investigator of the Glycotherapeutics Group. In October 2020, Professor Cool re-joined the Institute of Molecular and Cell Biology (IMCB) as a Research Director, Glycotherapeutics, where he focused on developing novel glycosaminoglycan biomolecules that enhance wound repair and control adult human mesenchymal stem cell activity.

Professor Cool has 117 patent applications across 26 families with 51 granted in the fields of glycosaminoglycan biochemistry, regenerative medicine and stem cell science. He has more than 150 publications and continues to foster strong strategic collaborations both nationally and internationally with academic and industry groups. He has a strong biomanufacturing and translational focus with experience in taking glycosaminoglycan-based devices through discovery RnD on to pre-clinical and clinical testing. Professor Cool also has an entrepreneurial and licensing background having successfully spun-off some of his technology to a US-based regenerative medicine start-up company, SMC Biotechnology Ltd. Professor Cool holds a Visiting Professor appointment at the Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore and an Adjunct Professor (Research) appointment in the Orthopaedic Department at the National University of Singapore (NUS). Prior to his move back to UQ, he previously held the position of Treasurer, Tissue Engineering and Regenerative Medicine International Society, Asia Pacific Chapter (TERMIS-AP) and Treasurer, Stem Cell Society Singapore (SCSS). He also held senior leadership positions in several Singapore-based R&D programmes, notably as Director, Allogeneic Stem Cell Manufacturing (ASTEM) and Theme Leader in Advanced Manufacturing for Biological Materials (AMBM). Prof Cool currently serves on the Editorial Board of the journals Biomaterials, Tissue Engineering and Regenerative Medicine, and is Asia-Pacific Regional Editor for Stem Cells and Development.

Research Interests

  • Manufacturing highly-potent stem cells
    Developing novel media, assays, and processes to enable the scale-up manufacturing of cell therapy products.
  • Rejuvenation of ageing stem cells
    Developing innovative methods to rejuvenate ageing stem cells to generate best-in-class cell banks for therapeutic use.
  • Synthesis of glycosaminoglycans as medical devices
    Developing scalable methods to manufacture fully synthetic glycosaminoglycans for use as media additives, biocoatings and medical devices for treating disease, injury or trauma.
  • Modification of stem cells to improve their therapeutic utility
    Altering stem cell surfaces to encourage protein binding and drive stem cell fate decisions for improved therapeutic efficacy.
  • Enhanced angiogenesis through glycosaminoglycan administration and medical device formulation
    Developing pro-angiogenic microenvironments using novel glycosaminoglycan formulations.

Research Impacts

I have over 25 years of leadership in identifying novel heparan sulphate (HS) glycosaminoglycan (GAG) sugars within stem cell niches and repairing tissues. These sugars sequester, protect, hold, and present key growth factors to stem cells. I have successfully used this complexation paradigm to unlock pathways critical to stem cell biology, mainly signalling cascades essential for maintaining naïve phenotypes. I have also shown that this strategy effectively develops bioadditives for manufacturing cell therapy devices for treating vascular ischemia/stroke, cartilage regeneration, and bone repair. A significant part of this pioneering effort has been manufacturing HS variants that mimic sugars in native tissues. Anchoring this strategy is my novel discovery platform that identifies specific domains in HS chains that form complexes with growth factors and growth factor receptors to generate powerful signalling complexes that mediate cell-fate decisions and potentiate tissue regeneration. Using this blueprint, I have developed a library of bio-inspired HS variants and subjected them to structure/function analyses. I strongly advocate for the safety/tolerability testing of HS materials and continue to lead industry-based projects in this area. I have considerable experience leading outcome-focused multidisciplinary research teams across all scientific discovery and translation aspects, with a proven track record in developing transformative technology and biotechnology entrepreneurship. I lead a long-standing effort to bank mesenchymal stem cells cultured in HS-supplemented media to treat age-related diseases (pre-clinical stage only) and have been working to transition this project to a commercial facility to develop suitable manufacturing and banking protocols for future clinical testing. Through these various opportunities, I have mentored numerous PhD students in Australia, Singapore, and the UK, which has helped accelerate research opportunities and led to significant gains in generating novel findings.

Qualifications

  • PhD
  • Bachelor of Science (Honours)

Publications

View all Publications

Supervision

View all Supervision

Available Projects

  • We have developed a range of glycosaminoglycan compounds that drive cell fate decisions through complexation with protein/protein receptors that are important for bone formation. Here we seek to coat implantable scaffolds (doi: 10.1116/1.4933109) with these materials and to progress these implantable orthopaedic devices through a range of preclinical models in an effort to define their future clinical utility.

  • We have identified a range of glycosaminoglycan-altering enzymes that can potentially drive senescent phenotypes linked to stem cell ageing during scale-up manufacturing. Here we seek to develop glycosaminoglycan variants capable of replenishing these lost glycosaminoglycan structures that can restore growth and potency.

View all Available Projects

Publications

Journal Article

Conference Publication

PhD and MPhil Supervision

Current Supervision

Completed Supervision

Possible Research Projects

Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.

  • We have developed a range of glycosaminoglycan compounds that drive cell fate decisions through complexation with protein/protein receptors that are important for bone formation. Here we seek to coat implantable scaffolds (doi: 10.1116/1.4933109) with these materials and to progress these implantable orthopaedic devices through a range of preclinical models in an effort to define their future clinical utility.

  • We have identified a range of glycosaminoglycan-altering enzymes that can potentially drive senescent phenotypes linked to stem cell ageing during scale-up manufacturing. Here we seek to develop glycosaminoglycan variants capable of replenishing these lost glycosaminoglycan structures that can restore growth and potency.