Advanced Monte Carlo Methods for Spatial Processes (2014–2016)

The modeling and analysis of spatial data relies more and more on sophisticated Monte Carlo simulation methods. However, with the growing complexity of today's spatial data, traditional Monte Carlo methods increasingly face difficulties in terms of speed and accuracy. The aim of this project is to develop new theory and applications at the interface of Monte Carlo methods and spatial statistics, building upon exciting theoretical and computational advances in both areas in recent years. The research will stimulate the design of microscopic and macroscopic complex spatial structures with superior properties, such as composite materials, solar cells, telecommunication networks, mining operations, and road systems.
Grant type:
ARC Discovery Projects
Funded by:
Australian Research Council