Fluid Transport in Materials of Nanoscale Dimensions (2021–2024)

Abstract:
This project aims to transform the modelling of fluid transport in materials of nanoscale dimension by determining the coupled interfacial heat and mass-transfer barriers, which critically influence the transport. The outcome will not only be new knowledge on the effects of inherent structural distortion and of the barriers on the fluid flow, but also cutting-edge techniques to estimate system size-dependent transport coefficients in nanoscale systems. These will be achieved through a combination of targeted molecular dynamics simulations and experiment, and will have far-reaching implications for nanotechnology and emerging processes in catalysis, gas separation, human health and nanofluidics, and enable design of more efficient systems.
Grant type:
ARC Discovery Projects
Researchers:
Funded by:
Australian Research Council