Dr Steffen Bollmann joined UQ’s School of Electrical Imaging and Computer Science in 2020 where he leads the Computational Imaging Group. The Group is developing computational methods to extract clinical and biological insights from magnetic resonance imaging (MRI) data. The aim is to make cutting-edge algorithms and tools available to a wide range of clinicians and researchers. This will enable better images, faster reconstruction times and the efficient extraction of clinical information to ensure a better understanding of a range of diseases. Dr Bollmann was appointed Artificial Intelligence (AI) lead for imaging at UQ’s Queensland Digital Health Centre (QDHeC) in 2023.
His research expertise is in quantitative susceptibility mapping, image segmentation and software applications to help researchers and clinicians access data and algorithms.
Dr Bollmann completed his PhD on multimodal imaging at the University Children’s Hospital and Swiss Federal Institute of Technology (ETH) Zurich, Switzerland.
In 2014 he joined the Centre for Advanced Imaging at UQ as a National Imaging Facility Fellow, where he pioneered the application of deep learning methods for quantitative imaging techniques, in particular Quantitative Susceptibility Mapping.
In 2019 he joined the Siemens Healthineers collaborations team at the MGH Martinos Center in Boston on a one-year industry exchange where he worked on the translation of fast imaging techniques into clinical applications.
Strong industry collaborations to bring research algorithms into applications such as Quantitative Susceptibility Mapping with industry partner Siemens Healthineers and the Neurodesk project with industry partner Oracle Cloud.
Further information is available at www.mri.sbollmann.net and regular research updates can be found on linkedin (https://www.linkedin.com/in/steffen-bollmann-00725097/) mastodon (https://masto.ai/@Sbollmann_MRI) and twitter/X (https://twitter.com/sbollmann_mri)
Journal Article: Variability of visual field maps in human early extrastriate cortex challenges the canonical model of organization of V2 and V3
Ribeiro, Fernanda Lenita, York, Ashley, Zavitz, Elizabeth, Bollmann, Steffen, Rosa, Marcello GP and Puckett, Alexander (2023). Variability of visual field maps in human early extrastriate cortex challenges the canonical model of organization of V2 and V3. eLife, 12. doi: 10.7554/elife.86439
Journal Article: Variability of visual field maps in human early extrastriate cortex challenges the canonical model of organization of V2 and V3
Lenita Ribeiro, Fernanda, York, Ashley, Zavitz, Elizabeth, Bollmann, Steffen, Rosa, Marcello G.P. and Puckett, Alexander (2023). Variability of visual field maps in human early extrastriate cortex challenges the canonical model of organization of V2 and V3. eLife e86439. doi: 10.7554/eLife.86439
Journal Article: Improved dynamic distortion correction for <scp>fMRI</scp> using single‐echo <scp>EPI</scp> and a readout‐reversed first image (<scp>REFILL</scp>)
Robinson, Simon Daniel, Bachrata, Beata, Eckstein, Korbinian, Bollmann, Saskia, Bollmann, Steffen, Hodono, Shota, Cloos, Martijn, Tourell, Monique, Jin, Jin, O'Brien, Kieran, Reutens, David C., Trattnig, Siegfried, Enzinger, Christian and Barth, Markus (2023). Improved dynamic distortion correction for fMRI using single‐echo EPI and a readout‐reversed first image (REFILL). Human Brain Mapping, 44 (15), 5095-5112. doi: 10.1002/hbm.26440
Robust, valid and interpretable deep learning for quantitative imaging
(2022–2025) ARC Linkage Projects
(2021–2023) Swinburne University of Technology
Translating deep learning models into medical imaging applications using secure cloud computing.
(2021–2022) UQ Knowledge Exchange & Translation Fund
Automated Quantitative Susceptibility Mapping for Clinical Applications
(2023) Doctor Philosophy
Solving Quantitative Susceptibility Mapping using Deep Learning
(2023) Master Philosophy
Robust Deep learning for Quantitative Susceptibility Mapping
Doctor Philosophy
Reproducible Neuroimaging Framework NeuroDesk
This project provides a reproducible neuroimaging data processing platform based on software containers (docker and singularity). The student will be able to learn about container technology and add new features to the platform, like the support of GPUs for deep learning applications, the support for M1/Arm processors by using muli-architecture builds and by developing graphical user interfaces.
Solving inverse problems in imaging
Convolutional neural networks are particulary well suited to solve a variety of inverse problems in medical imaging. This project is a great chance to get involved in the field of medical image processing using deep learning techniques from image reconstruction, registration to segmentation. Prior knowledge in Python, Tensorflow/Keras, Pytorch, and Linux shell scripting are recommended.
Lenita Ribeiro, Fernanda, York, Ashley, Zavitz, Elizabeth, Bollmann, Steffen, Rosa, Marcello G.P. and Puckett, Alexander (2023). Variability of visual field maps in human early extrastriate cortex challenges the canonical model of organization of V2 and V3. eLife e86439. doi: 10.7554/eLife.86439
Ribeiro, Fernanda Lenita, York, Ashley, Zavitz, Elizabeth, Bollmann, Steffen, Rosa, Marcello GP and Puckett, Alexander (2023). Variability of visual field maps in human early extrastriate cortex challenges the canonical model of organization of V2 and V3. eLife, 12. doi: 10.7554/elife.86439
Robinson, Simon Daniel, Bachrata, Beata, Eckstein, Korbinian, Bollmann, Saskia, Bollmann, Steffen, Hodono, Shota, Cloos, Martijn, Tourell, Monique, Jin, Jin, O'Brien, Kieran, Reutens, David C., Trattnig, Siegfried, Enzinger, Christian and Barth, Markus (2023). Improved dynamic distortion correction for fMRI using single‐echo EPI and a readout‐reversed first image (REFILL). Human Brain Mapping, 44 (15), 5095-5112. doi: 10.1002/hbm.26440
Cognolato, Francesco, O’Brien, Kieran, Jin, Jin, Robinson, Simon, Laun, Frederik B., Barth, Markus and Bollmann, Steffen (2023). NeXtQSM—A complete deep learning pipeline for data-consistent Quantitative Susceptibility Mapping trained with hybrid data. Medical Image Analysis, 84 102700. doi: 10.1016/j.media.2022.102700
Deep Learning Based Modelling of Three-dimensional Magnetic Field
Nguyen, Van Tai, Bollmann, Steffen, Bermingham, Michael, Nguyen, Ha Xuan and Dargusch, Matthew S. (2023). Deep Learning Based Modelling of Three-dimensional Magnetic Field. Progress In Electromagnetics Research B, 100, 173-189. doi: 10.2528/pierb23051402
Urriola, Javier, Bollmann, Steffen, Tremayne, Fred, Burianová, Hana, Marstaller, Lars and Reutens, David (2022). Spikes with and without concurrent high-frequency oscillations: topographic relationship and neural correlates using EEG-fMRI. Epilepsy Research, 188 107039, 1-10. doi: 10.1016/j.eplepsyres.2022.107039
Efficient modelling of permanent magnet field distribution for deep learning applications
Nguyen, Van Tai, Bollmann, Steffen, Bermingham, Michael and Dargusch, Matthew S. (2022). Efficient modelling of permanent magnet field distribution for deep learning applications. Journal of Magnetism and Magnetic Materials, 559 169521, 1-12. doi: 10.1016/j.jmmm.2022.169521
Open-Source Hypothalamic-ForniX (OSHy-X) Atlases and Segmentation Tool for 3T and 7T
Chang, Jeryn, Steyn, Frederik, Ngo, Shyuan, Henderson, Robert, Guo, Christine, Bollmann, Steffen, Fripp, Jurgen, Barth, Markus and Shaw, Thomas (2022). Open-Source Hypothalamic-ForniX (OSHy-X) Atlases and Segmentation Tool for 3T and 7T. Journal of Open Source Software, 7 (76), 4368. doi: 10.21105/joss.04368
Hanspach, Jannis, Bollmann, Steffen, Grigo, Johanna, Karius, Andre, Uder, Michael and Laun, Frederik B. (2022). Deep learning–based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data. Magnetic Resonance in Medicine, 88 (4), 1548-1560. doi: 10.1002/mrm.29265
Ribeiro, Fernanda L., Bollmann, Steffen and Puckett, Alexander M. (2021). Predicting the retinotopic organization of human visual cortex from anatomy using geometric deep learning. NeuroImage, 244 118624, 118624. doi: 10.1016/j.neuroimage.2021.118624
QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping
Stewart, Ashley Wilton, Robinson, Simon Daniel, O’Brien, Kieran, Jin, Jin, Widhalm, Georg, Hangel, Gilbert, Walls, Angela, Goodwin, Jonathan, Eckstein, Korbinian, Tourell, Monique, Morgan, Catherine, Narayanan, Aswin, Barth, Markus and Bollmann, Steffen (2021). QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping. Magnetic Resonance in Medicine, 87 (3), 1289-1300. doi: 10.1002/mrm.29048
Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective
Levitis, Elizabeth, van Praag, Cassandra D Gould, Gau, Rémi, Heunis, Stephan, DuPre, Elizabeth, Kiar, Gregory, Bottenhorn, Katherine L, Glatard, Tristan, Nikolaidis, Aki, Whitaker, Kirstie Jane, Mancini, Matteo, Niso, Guiomar, Afyouni, Soroosh, Alonso-Ortiz, Eva, Appelhoff, Stefan, Arnatkeviciute, Aurina, Atay, Selim Melvin, Auer, Tibor, Baracchini, Giulia, Bayer, Johanna M M, Beauvais, Michael J S, Bijsterbosch, Janine D, Bilgin, Isil P, Bollmann, Saskia, Bollmann, Steffen, Botvinik-Nezer, Rotem, Bright, Molly G, Calhoun, Vince D, Chen, Xiao ... Maumet, Camille (2021). Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective. GigaScience, 10 (8) giab051. doi: 10.1093/gigascience/giab051
Deep learning in magnetic resonance image reconstruction
Chandra, Shekhar S., Bran Lorenzana, Marlon, Liu, Xinwen, Liu, Siyu, Bollmann, Steffen and Crozier, Stuart (2021). Deep learning in magnetic resonance image reconstruction. Journal of Medical Imaging and Radiation Oncology, 65 (5) 1754-9485.13276, 564-577. doi: 10.1111/1754-9485.13276
Brainhack: Developing a culture of open, inclusive, community-driven neuroscience
Gau, Rémi, Noble, Stephanie, Heuer, Katja, Bottenhorn, Katherine L., Bilgin, Isil P., Yang, Yu-Fang, Huntenburg, Julia M., Bayer, Johanna M.M., Bethlehem, Richard A.I., Rhoads, Shawn A., Vogelbacher, Christoph, Borghesani, Valentina, Levitis, Elizabeth, Wang, Hao-Ting, Van Den Bossche, Sofie, Kobeleva, Xenia, Legarreta, Jon Haitz, Guay, Samuel, Atay, Selim Melvin, Varoquaux, Gael P., Huijser, Dorien C., Sandström, Malin S., Herholz, Peer, Nastase, Samuel A., Badhwar, AmanPreet, Dumas, Guillaume, Schwab, Simon, Moia, Stefano, Dayan, Michael ... Zuo, Xi-Nian (2021). Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 109 (11), 1769-1775. doi: 10.1016/j.neuron.2021.04.001
Abbasi‐Rad, Shahrokh, O’Brien, Kieran, Kelly, Samuel, Vegh, Viktor, Rodell, Anders, Tesiram, Yasvir, Jin, Jin, Barth, Markus and Bollmann, Steffen (2021). Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning estimation. Magnetic Resonance in Medicine, 85 (5), 2462-2476. doi: 10.1002/mrm.28590
MRI phase offset correction method impacts quantitative susceptibility mapping
Abdulla, Shaeez Usman, Reutens, David, Bollmann, Steffen and Vegh, Viktor (2020). MRI phase offset correction method impacts quantitative susceptibility mapping. Magnetic Resonance Imaging, 74, 139-151. doi: 10.1016/j.mri.2020.08.009
Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI
Shaw, Thomas, York, Ashley, Ziaei, Maryam, Barth, Markus and Bollmann, Steffen (2020). Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) using multi-contrast MRI. NeuroImage, 218 116798, 116798. doi: 10.1016/j.neuroimage.2020.116798
Shaw, Thomas, York, Ashley, Barth, Markus and Bollmann, Steffen (2020). Towards optimising MRI characterisation of Tissue (TOMCAT) dataset including all Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) data. Data in Brief, 32 106043, 106043. doi: 10.1016/j.dib.2020.106043
Influence of 7T GRE-MRI signal compartment model choice on tissue parameters
Thapaliya, Kiran, Vegh, Viktor, Bollmann, Steffen and Barth, Markus (2020). Influence of 7T GRE-MRI signal compartment model choice on tissue parameters. Frontiers in Neuroscience, 14 271, 271. doi: 10.3389/fnins.2020.00271
Jung, Woojin, Bollmann, Steffen and Lee, Jongho (2020). Overview of quantitative susceptibility mapping using deep learning: current status, challenges and opportunities. NMR in Biomedicine, 35 (4) e4292, e4292. doi: 10.1002/nbm.4292
Urriola, Javier, Bollmann, Steffen, Tremayne, Fred, Burianová, Hana, Marstaller, Lars and Reutens, David (2020). Functional connectivity of the irritative zone identified by electrical source imaging, and EEG-correlated fMRI analyses. NeuroImage: Clinical, 28 102440, 102440. doi: 10.1016/j.nicl.2020.102440
Non-linear realignment improves hippocampus subfield segmentation reliability
Shaw, Thomas B., Bollmann, Steffen, Atcheson, Nicole T., Strike, Lachlan T., Guo, Christine, McMahon, Katie L., Fripp, Jurgen, Wright, Margaret J., Salvado, Olivier and Barth, Markus (2019). Non-linear realignment improves hippocampus subfield segmentation reliability. NeuroImage, 203 116206, 116206. doi: 10.1016/j.neuroimage.2019.116206
7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy
Thapaliya, Kiran, Urriola, Javier, Barth, Markus, Reutens, David C., Bollmann, Steffen and Vegh, Viktor (2019). 7T GRE-MRI signal compartments are sensitive to dysplastic tissue in focal epilepsy. Magnetic Resonance Imaging, 61, 1-8. doi: 10.1016/j.mri.2019.05.011
DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping
Bollmann, Steffen, Rasmussen, Kasper Gade Bøtker, Kristensen, Mads, Blendal, Rasmus Guldhammer, Østergaard, Lasse Riis, Plocharski, Maciej, O'Brien, Kieran, Langkammer, Christian, Janke, Andrew and Barth, Markus (2019). DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. NeuroImage, 195, 373-383. doi: 10.1016/j.neuroimage.2019.03.060
Bollmann, Steffen, Kristensen, Matilde Holm, Larsen, Morten Skaarup, Olsen, Mathias Vassard, Pedersen, Mads Jozwiak, Østergaard, Lasse Riis, O’Brien, Kieran, Langkammer, Christian, Fazlollahi, Amir and Barth, Markus (2019). SHARQnet – Sophisticated harmonic artifact reduction in quantitative susceptibility mapping using a deep convolutional neural network. Zeitschrift für Medizinische Physik, 29 (2), 139-149. doi: 10.1016/j.zemedi.2019.01.001
Thapaliya, Kiran, Vegh, Viktor, Bollmann, Steffen and Barth, Markus (2017). Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T. NeuroImage, 182, 407-416. doi: 10.1016/j.neuroimage.2017.11.029
Real-Time Clustered Multiple Signal Classification (RTC-MUSIC)
Dinh, Christoph, Esch, Lorenz, Rühle, Johannes, Bollmann, Steffen, Güllmar, Daniel, Baumgarten, Daniel, Hämäläinen, Matti S. and Haueisen, Jens (2017). Real-Time Clustered Multiple Signal Classification (RTC-MUSIC). Brain Topography, 31 (1), 125-128. doi: 10.1007/s10548-017-0586-7
Bollmann, Steffen, Robinson, Simon Daniel, O'Brien, Kieran, Vegh, Viktor, Janke, Andrew, Marstaller, Lars, Reutens, David and Barth, Markus (2017). The challenge of bias-free coil combination for quantitative susceptibility mapping at ultra-high field. Magnetic Resonance in Medicine, 79 (1), 97-107. doi: 10.1002/mrm.26644
The PhysIO toolbox for modeling physiological noise in fMRI data
Kasper, Lars, Bollmann, Steffen, Diaconescu, Andreea O., Hutton, Chloe, Heinzle, Jakob, Iglesias, Sandra, Hauser, Tobias U., Sebold, Miriam, Manjaly, Zina-Mary, Pruessmann, Klaas P. and Stephan, Klaas E. (2017). The PhysIO toolbox for modeling physiological noise in fMRI data. Journal of Neuroscience Methods, 276, 56-72. doi: 10.1016/j.jneumeth.2016.10.019
Stäb, Daniel, Bollmann, Steffen, Langkammer, Christian, Bredies, Kristian and Barth, Markus (2016). Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength. NMR in Biomedicine, 30 (4) e3620, e3620. doi: 10.1002/nbm.3620
Echo time-dependent quantitative susceptibility mapping contains information on tissue properties
Sood, Surabhi, Urriola, Javier, Reutens, David C., O'Brien, Kieran, Bollmann, Steffen, Barth, Markus and Vegh, Viktor (2016). Echo time-dependent quantitative susceptibility mapping contains information on tissue properties. Magnetic Resonance in Medicine, 77 (5), 1946-1958. doi: 10.1002/mrm.26281
Pulsed arterial spin labelling at ultra-high field with a B1 +-optimised adiabatic labelling pulse
Zimmer, Fabian, O'Brien, Kieran, Bollmann, Steffen, Pfeuffer, Josef, Heberlein, Keith and Barth, Markus (2016). Pulsed arterial spin labelling at ultra-high field with a B1 +-optimised adiabatic labelling pulse. Magnetic Resonance Materials in Physics, Biology and Medicine, 29 (3), 463-473. doi: 10.1007/s10334-016-0555-2
Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion
Ghisleni, Carmen, Bollmann, Steffen, Biason-Lauber, Anna, Poil, Simon-Shlomo, Brandeis, Daniel, Martin, Ernst, Michels, Lars, Hersberger, Martin, Suckling, John, Klaver, Peter and O'Gorman, Ruth L. (2015). Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion. PLoS One, 10 (9) e0135827, e0135827-e0135827. doi: 10.1371/journal.pone.0135827
Ghisleni, Carmen, Bollmann, Steffen, Poil, Simon-Shlomo, Brandeis, Daniel, Martin, Ernst, Michels, Lars, O’Gorman, Ruth L. and Klaver, Peter (2015). Subcortical Glutamate Mediates the Reduction of Short-Range Functional Connectivity with Age in a Developmental Cohort. The Journal of Neuroscience, 35 (22), 8433-8441. doi: 10.1523/JNEUROSCI.4375-14.2015
Bollmann, Steffen, Ghisleni, Carmen, Poil, Simon-Shlomo, Martin, Ernst, Ball, Juliane, Eich-Höchli, Dominique, Klaver, Peter, O’Gorman, Ruth L., Michels, Lars and Brandeis, Daniel (2015). Age-dependent and -independent changes in attention-deficit/hyperactivity disorder (ADHD) during spatial working memory performance. The World Journal of Biological Psychiatry, 18 (4), 279-290. doi: 10.3109/15622975.2015.1112034
Developmental Changes in Gamma-Aminobutyric Acid Levels in Attention-Deficit/hyperactivity Disorder
Bollmann, S., Ghisleni, C., Poil, S.-S., Martin, E., Ball, J., Eich-Höchli, D., Edden, R. A. E., Klaver, P., Michels, L., Brandeis, D. and O'Gorman, R. L. (2015). Developmental Changes in Gamma-Aminobutyric Acid Levels in Attention-Deficit/hyperactivity Disorder. Translational Psychiatry, 5 (6) e589, e589.1-e589.8. doi: 10.1038/tp.2015.79
Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD)
Poil, S. -S., Bollmann, S., Ghisleni, C., O'Gorman, R. L., Klaver, P., Ball, J., Eich-Hoechli, D., Brandeis, D. and Michels, L. (2014). Age dependent electroencephalographic changes in attention-deficit/hyperactivity disorder (ADHD). Clinical Neurophysiology, 125 (8), 1626-1638. doi: 10.1016/j.clinph.2013.12.118
Coupling between resting cerebral perfusion and EEG
O'Gorman, R. L., Poil, S-S., Brandeis, D., Klaver, P., Bollmann, S., Ghisleni, C., Luechinger, R., Martin, E., Shankaranarayanan, A., Alsop, D. C. and Michels, L. (2013). Coupling between resting cerebral perfusion and EEG. Brain Topography, 26 (3), 442-457. doi: 10.1007/s10548-012-0265-7
Proceedings of the OHBM Brainhack 2021
Nikolaidis, Aki, Manchini, Matteo, Auer, Tibor, L. Bottenhorn, Katherine, Alonso-Ortiz, Eva, Gonzalez-Escamilla, Gabriel, Valk, Sofie, Glatard, Tristan, Selim Atay, Melvin, M.M. Bayer, Johanna, Bijsterbosch, Janine, Algermissen, Johannes, Beck, Natacha, Bermudez, Patrick, Poyraz Bilgin, Isil, Bollmann, Steffen, Bradley, Claire, E.J. Campbell, Megan, Caron, Bryan, Civier, Oren, Pedro Coelho, Luis, El Damaty, Shady, Das, Samir, Dugré, Mathieu, Earl, Eric, Evas, Stefanie, Lopes Fischer, Nastassja, Fu Yap, De, G. Garner, Kelly ... P. Zwiers, Marcel (2023). Proceedings of the OHBM Brainhack 2021. OHBM Brainhack 2021, Online, 16-18 June 2021. Organization for Human Brain Mapping. doi: 10.52294/258801b4-a9a9-4d30-a468-c43646391211
Evaluation of the REFILL dynamic distortion correction method for fMRI
Robinson, Simon, Bachrata, Beata, Eckstein, Korbinian, Dymerska, Barbara, Bollmann, Saskia, Bollmann, Steffen, Hodono, Shota, Cloos, Martijn, Tourell, Monique, Jin, Jin, O'Brien, Kieran, Reutens, David, Trattnig, Siegfried, Enzinger, Christian and Barth, Markus (2023). Evaluation of the REFILL dynamic distortion correction method for fMRI. Joint Annual Meeting ISMRM-ESMRMB ISMRT 31st Annual Meeting, London, United Kingdom, 7 - 12 May 2022. Berkeley, CA, United States: International Society for Magnetic Resonance in Medicine. doi: 10.58530/2022/2807
Isotropic QSM in seconds using super-resolution 2D EPI imaging in 3 orthogonal planes
Bachrata, Beata, Bollmann, Steffen, Grabner, Günther, Trattnig, Siegfried and Robinson, Simon (2023). Isotropic QSM in seconds using super-resolution 2D EPI imaging in 3 orthogonal planes. Concord, CA: ISMRM. doi: 10.58530/2022/2362
Open-Source Hypothalamic-ForniX (OSHy-X) Atlases and Segmentation Tool for 3T and 7T
Chang, Jeryn, Steyn, Frederik, Ngo, Shyuan, Henderson, Robert, Guo, Christine, Bollmann, Steffen, Fripp, Jurgen, Barth, Markus and Shaw, Thomas (2023). Open-Source Hypothalamic-ForniX (OSHy-X) Atlases and Segmentation Tool for 3T and 7T. Concord, CA: ISMRM. doi: 10.58530/2022/3808
Stewart, Ashley Wilton, Goodwin, Jonathan, Robinson, Simon Daniel, O’Brien, Kieran, Jin, Jin, Barth, Markus and Bollmann, Stefan (2022). Quantitative susceptibility mapping as an alternative to CT for localizing gold intraprostatic fiducial markers. ISMRM 2022, London, United Kingdom, 7-12 May 2022. Concord, CA USA: International Society for Magnetic Resonance in Medicine.
QSMxT: a fully automated, quantitative susceptibility mapping pipeline
Stewart, Ashley, Robinson, Simon Daniel, O’Brien, Kieran, Jin, Jin, Walls, Angela, Narayanan, Aswin, Barth, Markus and Bollman, Steffen (2021). QSMxT: a fully automated, quantitative susceptibility mapping pipeline. AusIron 2021, Brisbane, QLD Australia, 29 November 2021. Brisbane, QLD Australia: QIMR Berghofer Medical Research Institute.
QSM as an alternative to CT for localizing gold intraprostatic fiducial markers
Wilton Stewart, Ashley, Goodwin, Jonathan, Robinson, Simon Daniel, O’Brien, Kieran, Jin, Jin, Barth, Markus and Bollmann, Steffen (2021). QSM as an alternative to CT for localizing gold intraprostatic fiducial markers. 3rd Annual Meeting of the ISMRM ANZ Chapter, 2021, Online, 22-23 November 2021. International Society for Magnetic Resonance in Medicine ANZ Chapter.
QSMxT:a fully automated, quantitative susceptibility mapping pipeline
Stewart, Ashley Wilton, Robinson, Simon Daniel, O’Brien, Kieran, Jin, Jin, Walls, Angela, Narayanan, Aswin, Barth, Markus and Bollmann, Steffen (2021). QSMxT:a fully automated, quantitative susceptibility mapping pipeline. 3rd Annual Meeting of the ISMRM ANZ Chapter, 2021, Online, 22-23 November. International Society for Magnetic Resonance in Medicine ANZ Chapter.
Thapaliya, Kiran, Barth, Markus, Bollmann, Steffen, Reutens, David and Vegh, Viktor (2018). 7T GRE-MRI frequency shifts obtained from signal compartments can differentiate normal from dysplastic tissue in focal epilepsy. ISMRM, Paris, France, 16-21 June 2018.
Bollmann, Steffen, Kelly, Samuel, Vegh, Viktor, Rodell, Anders, Tesiram, Yas, Barth, Markus and O'Brien, Kieran (2018). Improving FLAIR SAR efficiency by predicting B1-maps at 7T from a standard localizer scan using deep convolutional neural networks. ISMRM, Paris, France, 17-21 June 2018.
Thapaliya, Kiran, Vegh, Viktor, Bollmann, Steffen and Barth, Markus (2018). Myelin water fraction across the corpus callosum using multi-echo gradient echo at 7T - influence of model settings and flip angle. ISMRM, Paris, France, 16-21 June 2018.
J. Munk, N. Jacobsen, M. Plocharski, L. R. Østergaard, M. Barth, A. Janke and S. Bollmann (2017). Contrast Matching of Ultra-High Resolution Minimum Deformation Averaged MRI Models to Facilitate Computation of a Multi-Modal Model of the Human Brain. ISMRM, Honolulu, 22-27 April 2017.
Bollmann, Steffen, Andrew Janke and Markus Barth (2017). Deep Mapping: Using deep convolutional neural networks to estimate quantitative T1 maps trained on a 7 T minimum deformation average model. ISMRM, Honolulu, 22-27 April 2017.
Saskia Bollmann, Steffen Bollmann, Alex Puckett, Andrew Janke and Markus Barth (2017). Non-Linear Realignment Using Minimum Deformation Averaging for Single-Subject FMRI at Ultra-High Field. ISMRM, Honolulu, 22-27 April 2017.
Kiran Thapaliya, S. Bollmann, V. Vegh and M. Barth (2017). Signal Compartments Mapped from Multi-Echo Gradient Recalled Echo Data Vary across the Corpus Callosum. ISMRM, Honolulu, 22-27 April 2017.
A 7T Human Brain Microstructure Atlas by Minimum Deformation Averaging at 300μm
Janke, Andrew L ., O'Brian, Kieran, Bollmann, Steffen, Kober, Tobias and Barth, Markus (2016). A 7T Human Brain Microstructure Atlas by Minimum Deformation Averaging at 300μm. International Society for Magnetic Resonance in Medicine, Singapore, 7-13 May 2016.
Contribution of cortical layer cytoarchitecture to quantitative susceptibility mapping
Sood, Surabhi, Urriola, Javier, Reutens, David C., Bollmann, Steffen, O'Brien, Kieran, Barth, Markus and Vegh, Viktor (2016). Contribution of cortical layer cytoarchitecture to quantitative susceptibility mapping. Organisation of the Human Brain Mapping, Geneva, Switzerland, 26-30 June, 2016.
Echo time based influences on quantitative susceptibility mapping
Sood, Surabhi, Urriola, Javier, Reutens, David C., Bollmann, Steffen, O'Brien, Kieran, Barth, Markus and Vegh, Viktor (2016). Echo time based influences on quantitative susceptibility mapping. International Symposium on Magnetic Resonance in Medicine, Singapore, May.
Selective combination of MRI phase images
Vegh, Viktor, O'Brien, Kieran, Reutens, David C., Bollmann, Steffen and Barth, Markus (2016). Selective combination of MRI phase images. International Symposium on Magnetic Resonance in Medicine, Singapore, 7-13 May, 2016.
When to perform channel combination in 7 Tesla quantitative susceptibility mapping?
Bollmann, Steffen, Zimmer, Fabian, O'Brien, Fabian, Vegh, Viktor and Barth, Markus (2015). When to perform channel combination in 7 Tesla quantitative susceptibility mapping?. Organization of the Human Brain Mapping, Hawaii Convention Centre, Honolulu, Hawaii, May.
A GPU-accelerated Performance Optimized RAP-MUSIC Algorithm for Real-Time Source Localization
Dinh, C., Ruehle, J., Bollmann, S., Haueisen, J. and Guellmar, D. (2012). A GPU-accelerated Performance Optimized RAP-MUSIC Algorithm for Real-Time Source Localization. BMT 2012 - 46th annual conference of the German Society for Biomedical Engineering, Jena, Germany, 16-19 September 2012. Berlin, Germany: Walter de Gruyter. doi: 10.1515/bmt-2012-4260
Stewart, Ashley, Robinson, Simon Daniel, O'Brien, Kieran, Jin, Jin, Walls, Angela, Narayanan, Aswin, Barth, Markus and Bollmann, Steffen eds. (2021). QSMxT - a cross-platform, flexible, lightweight, and scalable processing pipeline for quantitative susceptibility mapping. ISMRM 2021, Online, 15-21 May 2021. Concord, CA USA: International Society for Magnetic Resonance in Medicine.
Robust masking techniques for multi-echo quantitative susceptibility mapping
Stewart, Ashley, Robinson, Simon Daniel, O'Brien, Kieran, Jin, Jin, Widhalm, Georg, Hangel, Gilbert, Walls, Angela, Goodwin, Jonathan, Eckstein, Korbinian, Barth, Markus and Bollmann, Steffen eds. (2021). Robust masking techniques for multi-echo quantitative susceptibility mapping. ISMRM 2021, Online, 15-20 May 2021. Concord, CA USA: International Society for Magnetic Resonance in Medicine.
Tourell, Monique, Jin, Jin, Stewart, Ashley, Bollmann, Saskia, Bollmann, Steffen, Robinson, Simon, O'Brien, Kieran and Barth, Markus eds. (2021). Submillimeter, aub-minute quantitative susceptibility mapping using a multi-shot 3D-EPI with 2D CAIPIRINHA acceleration. ISMRM 2021, Online, 15-20 May 2021. Concord, CA USA: International Society for Magnetic Resonance in Medicine.
Stewart, Ashley, O'Brien, Kieran, Kim, Jinsuh, Maréchal, Bénédicte, Nasrallah, Fatimah, Kean, Michael, Barth, Markus and Bollmann, Steffen eds. (2019). Quantitative susceptibility mapping for routine clinical use – an inline automated QSM reconstruction pipeline. ISMRM 2019, Montreal, Canada, 11-16 May, 2019. Concord, CA USA: International Society for Magnetic Resonance in Medicine.
Bollmann, Steffen, Janke, Andrew, Marstaller, Lars, Reutens, David, O'Brien, Kieran and Barth, Markus (2017). GRE and QSM average 7T model. The University of Queensland. (Dataset) doi: 10.14264/uql.2017.178
MP2RAGE T1-weighted average 7T model
Bollmann, Steffen, Janke, Andrew, Marstaller, Lars, Reutens, David, O'Brien, Kieran and Barth, Markus (2017). MP2RAGE T1-weighted average 7T model. The University of Queensland. (Dataset) doi: 10.14264/uql.2017.266
Turbo Spin Echo average 7T model
Bollmann, Steffen, Janke, Andrew, Marstaller, Lars, Reutens, David, O'Brien, Kieran and Barth, Markus (2017). Turbo Spin Echo average 7T model. The University of Queensland. (Dataset) doi: 10.14264/uql.2017.267
Robust, valid and interpretable deep learning for quantitative imaging
(2022–2025) ARC Linkage Projects
(2021–2023) Swinburne University of Technology
Translating deep learning models into medical imaging applications using secure cloud computing.
(2021–2022) UQ Knowledge Exchange & Translation Fund
ARC Training Centre for Innovation in Biomedical Imaging Technology
(2017–2024) ARC Industrial Transformation Training Centres
(2015–2017) UQ Postdoctoral Research Fellowship
Robust Deep learning for Quantitative Susceptibility Mapping
Doctor Philosophy — Principal Advisor
Computational Medical Imaging
Doctor Philosophy — Principal Advisor
Structure-function brain network dynamics in post-stroke depression
Doctor Philosophy — Associate Advisor
Other advisors:
Hybrid additive manufacturing processes
Doctor Philosophy — Associate Advisor
Other advisors:
Development of a deep learning framework for multi-modal medical imaging
Doctor Philosophy — Associate Advisor
Other advisors:
Automated Quantitative Susceptibility Mapping for Clinical Applications
(2023) Doctor Philosophy — Principal Advisor
Other advisors:
Solving Quantitative Susceptibility Mapping using Deep Learning
(2023) Master Philosophy — Principal Advisor
Other advisors:
(2021) Doctor Philosophy — Principal Advisor
Other advisors:
Sequence Development to Improve Image Quality for T2- and Diffusion Weighted Imaging at 7T
(2021) Doctor Philosophy — Associate Advisor
Other advisors:
MR signal modelling approaches to characterise tissue microstructure in in-vivo human brain
(2020) Doctor Philosophy — Associate Advisor
Other advisors:
Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.
Reproducible Neuroimaging Framework NeuroDesk
This project provides a reproducible neuroimaging data processing platform based on software containers (docker and singularity). The student will be able to learn about container technology and add new features to the platform, like the support of GPUs for deep learning applications, the support for M1/Arm processors by using muli-architecture builds and by developing graphical user interfaces.
Solving inverse problems in imaging
Convolutional neural networks are particulary well suited to solve a variety of inverse problems in medical imaging. This project is a great chance to get involved in the field of medical image processing using deep learning techniques from image reconstruction, registration to segmentation. Prior knowledge in Python, Tensorflow/Keras, Pytorch, and Linux shell scripting are recommended.