Journal Article: Integrable models from singly generated planar algebras
Poncini, Xavier and Rasmussen, Jørgen (2023). Integrable models from singly generated planar algebras. Nuclear Physics B, 994 116308, 116308. doi: 10.1016/j.nuclphysb.2023.116308
Journal Article: Integrability of planar-algebraic models
Poncini, Xavier and Rasmussen, Jørgen (2023). Integrability of planar-algebraic models. Journal of Statistical Mechanics: Theory and Experiment, 2023 (7) 073101. doi: 10.1088/1742-5468/acdce7
Journal Article: Asymmetric Galilean conformal algebras
Ragoucy, Eric, Rasmussen, Jørgen and Raymond, Christopher (2022). Asymmetric Galilean conformal algebras. Nuclear Physics B, 981 115857. doi: 10.1016/j.nuclphysb.2022.115857
Towards logarithmic representation theory of W-algebras
(2021–2024) ARC Discovery Projects
Indecomposable representation theory
(2016–2020) ARC Discovery Projects
Representation theory of diagram algebras and logarithmic conformal field theory
(2012–2015) ARC Future Fellowships
(2023) Doctor Philosophy
Algebraic aspects of lattice models
Doctor Philosophy
Algebraic aspects of conformal field theory
(2020) Doctor Philosophy
Representation theory of infinite-dimensional Lie algebras
Conformal field theory plays a fundamental role in string theory and in the description of phase transitions in statistical mechanics. The basic symmetries of a conformal field theory are generated by infinite-dimensional Lie algebras including the Virasoro algebra. The representation theory of these algebras is a vast and very active area of research in pure mathematics and mathematical physics. Although reducible yet indecomposable representations are of great importance in logarithmic conformal field theory, relatively little is known about them. This project will examine such representations of the Virasoro algebra, of the affine Kac-Moody algebras and of certain classes of so-called W-algebras.
Diagram algebras and integrable lattice models
Diagram algebras offer an intriguing mathematical environment where computations are performed by diagrammatic manipulations. Applications include knot theory and lattice models in statistical mechanics. Important examples of diagram algebras are the Temperley-Lieb algebras which can be used to describe lattice loop models of a large class of two-dimensional physical systems with nonlocal degrees of freedom in terms of extended polymers or connectivities. This project seeks to develop the representation theory of some of these diagram algebras and to apply the results to the corresponding integrable lattice loop models.
Lie superalgebras
Lie algebras, Lie groups, and their representation theories are instrumental in our description of symmetries in physics and elsewhere. They also occupy a central place in pure mathematics where they often provide a bridge between different mathematical structures. Motivated in part by the proposed fundamental role played by supersymmetry in theoretical physics, Lie superalgebras have been introduced as the corresponding generalisations of Lie algebras. The aim of this project is to study Lie superalgebras, their rich representation theory, and some of their applications.
Integrable models from singly generated planar algebras
Poncini, Xavier and Rasmussen, Jørgen (2023). Integrable models from singly generated planar algebras. Nuclear Physics B, 994 116308, 116308. doi: 10.1016/j.nuclphysb.2023.116308
Integrability of planar-algebraic models
Poncini, Xavier and Rasmussen, Jørgen (2023). Integrability of planar-algebraic models. Journal of Statistical Mechanics: Theory and Experiment, 2023 (7) 073101. doi: 10.1088/1742-5468/acdce7
Asymmetric Galilean conformal algebras
Ragoucy, Eric, Rasmussen, Jørgen and Raymond, Christopher (2022). Asymmetric Galilean conformal algebras. Nuclear Physics B, 981 115857. doi: 10.1016/j.nuclphysb.2022.115857
Publisher’s note: “demazure formula for An weyl polytope sums”
Rasmussen, Jørgen and Walton, Mark A. (2022). Publisher’s note: “demazure formula for An weyl polytope sums”. Journal of Mathematical Physics, 63 (4), 049902. doi: 10.1063/5.0094183
Critical behaviour of loop models on causal triangulations
Durhuus, Bergfinnur, Poncini, Xavier, Rasmussen, Jørgen and Ünel, Meltem (2021). Critical behaviour of loop models on causal triangulations. Journal of Statistical Mechanics: Theory and Experiment, 2021 (11) 113102, 113102. doi: 10.1088/1742-5468/ac2dfa
Demazure formula for An Weyl polytope sums
Rasmussen, Jørgen and Walton, Mark A. (2021). Demazure formula for An Weyl polytope sums. Journal of Mathematical Physics, 62 (10) 101702, 101702. doi: 10.1063/5.0058465
Staggered modules of N = 2 superconformal minimal models
Raymond, Christopher, Ridout, David and Rasmussen, Jørgen (2021). Staggered modules of N = 2 superconformal minimal models. Nuclear Physics B, 967 115397, 115397. doi: 10.1016/j.nuclphysb.2021.115397
Multi-graded Galilean conformal algebras
Ragoucy, Eric, Rasmussen, Jørgen and Raymond, Christopher (2020). Multi-graded Galilean conformal algebras. Nuclear Physics B, 957 115092, 115092. doi: 10.1016/j.nuclphysb.2020.115092
Yang-Baxter integrable dimers on a strip
Pearce, Paul A., Rasmussen, Jorgen and Vittorini-Orgeas, Alessandra (2020). Yang-Baxter integrable dimers on a strip. Journal of Statistical Mechanics: Theory and Experiment, 2020 (1) 013107. doi: 10.1088/1742-5468/ab54bd
Staggered and affine Kac modules over A1 (1)
Rasmussen, Jørgen (2020). Staggered and affine Kac modules over A1 (1). Nuclear Physics B, 950 114865, 114865. doi: 10.1016/j.nuclphysb.2019.114865
Higher-order Galilean contractions
Rasmussen, Jørgen and Raymond, Christopher (2019). Higher-order Galilean contractions. Nuclear Physics B, 945 114680, 114680. doi: 10.1016/j.nuclphysb.2019.114680
Fusion hierarchies, T-systems and Y-systems for the A2(1) models
Morin-Duchesne, Alexi, Pearce, Paul A. and Rasmussen, Jørgen (2019). Fusion hierarchies, T-systems and Y-systems for the A2(1) models. Journal of Statistical Mechanics: Theory and Experiment, 2019 (1) 013101, 013101. doi: 10.1088/1742-5468/aaf632
Galilean contractions of W-algebras
Rasmussen, Jorgen and Raymond, Christopher (2017). Galilean contractions of W-algebras. Nuclear Physics B, 922, 435-479. doi: 10.1016/j.nuclphysb.2017.07.006
On the reality of spectra of Uq(sl2)-invariant XXZ Hamiltonians
Morin-Duchesne, Alexi, Rasmussen, Jorgen, Ruelle, Philippe and Saint-Aubin, Yvan (2016). On the reality of spectra of Uq(sl2)-invariant XXZ Hamiltonians. Journal of Statistical Mechanics: Theory and Experiment, 2016 (5) 053105, 053105. doi: 10.1088/1742-5468/2016/05/053105
Integrability and conformal data of the dimer model
Morin-Duchesne, Alexi, Rasmussen, Jorgen and Ruelle, Philippe (2016). Integrability and conformal data of the dimer model. Journal of Physics A: Mathematical and Theoretical, 49 (17) 174002, 1-57. doi: 10.1088/1751-8113/49/17/174002
Boundary algebras and Kac modules for logarithmic minimal models
Morin-Duchesne, Alex., Rasmussen, Jorgen. and Ridout, David. (2015). Boundary algebras and Kac modules for logarithmic minimal models. Nuclear Physics B, 899, 677-769. doi: 10.1016/j.nuclphysb.2015.08.017
Fusion rules for the logarithmic N=1 superconformal minimal models: I. The Neveu-Schwarz sector
Canagasabey, Michael, Rasmussen, Jorgen and Ridout, David (2015). Fusion rules for the logarithmic N=1 superconformal minimal models: I. The Neveu-Schwarz sector. Journal of Physics A: Mathematical and Theoretical, 48 (41) 415402, 1-49. doi: 10.1088/1751-8113/48/41/415402
Dimer representations of the Temperley-Lieb algebra
Morin-Duchesne, Alexi, Rasmussen, Jorgen and Ruelle, Philippe (2015). Dimer representations of the Temperley-Lieb algebra. Nuclear Physics B, 890, 363-387. doi: 10.1016/j.nuclphysb.2014.11.016
Critical dense polymers with Robin boundary conditions, half-integer Kac labels and Z4 fermions
Pearce, Paul A., Rasmussen, Jorgen and Tipunin, Ilya Yu (2014). Critical dense polymers with Robin boundary conditions, half-integer Kac labels and Z4 fermions. Nuclear Physics B, 889, 580-636. doi: 10.1016/j.nuclphysb.2014.10.022
Fusion hierarchies, T-systems and Y-systems of logarithmic minimal models
Morin-Duchesne, Alexi, Pearce, Paul A. and Rasmussen, Jørgen (2014). Fusion hierarchies, T-systems and Y-systems of logarithmic minimal models. Journal of Statistical Mechanics: Theory and Experiment, 2014 (5) P05012, P05012.1-P05012.88. doi: 10.1088/1742-5468/2014/05/P05012
Logarithmic superconformal minimal models
Pearce, Paul A., Rasmussen, Jørgen and Tartaglia, Elena (2014). Logarithmic superconformal minimal models. Journal of Statistical Mechanics: Theory and Experiment, 2014 (5) P05001, P05001.1-P05001.61. doi: 10.1088/1742-5468/2014/05/P05001
Coset construction of logarithmic minimal models: branching rules and branching functions
Pearce, Paul A. and Rasmussen, Jorgen (2013). Coset construction of logarithmic minimal models: branching rules and branching functions. Journal of Physics A: Mathematical and Theoretical, 46 (35) 355402, 355402. doi: 10.1088/1751-8113/46/35/355402
Modular invariant partition function of critical dense polymers
Morin-Duchesne, Alexi, Pearce, Paul A. and Rasmussen, Jørgen (2013). Modular invariant partition function of critical dense polymers. Nuclear Physics, Section B, 874 (1), 312-357. doi: 10.1016/j.nuclphysb.2013.05.016
Infinitely extended Kac table of solvable critical dense polymers
Pearce, Paul A., Rasmussen, Jørgen and Villani, Simon P. (2013). Infinitely extended Kac table of solvable critical dense polymers. Journal of Physics A - Mathematical and Theoretical, 46 (17) 175202, 1-38. doi: 10.1088/1751-8113/46/17/175202
Discrete holomorphicity and integrability in loop models with open boundaries
de Gier, Jan, Lee, Alexander and Rasmussen, Jorgen (2013). Discrete holomorphicity and integrability in loop models with open boundaries. Journal of Statistical Mechanics: Theory and Experiment, 2013 (2) P02029, P02029.1-P02029.27. doi: 10.1088/1742-5468/2013/02/P02029
Refined conformal spectra in the dimer model
Rasmussen, Jorgen and Ruelle, Philippe (2012). Refined conformal spectra in the dimer model. Journal of Statistical Mechanics-Theory and Experiment, 2012 (10) P10002, P10002-1-P10002-44. doi: 10.1088/1742-5468/2012/10/P10002
Geometric exponents of dilute loop models
Provencher, Guillaume, Saint-Aubin, Yvan, Pearce, Paul A. and Rasmussen, Jorgen (2012). Geometric exponents of dilute loop models. Journal of Statistical Physics, 147 (2), 315-350. doi: 10.1007/s10955-012-0464-3
Classification of Kac representations in the logarithmic minimal models LM(1, p)
Rasmussen, Jørgen (2011). Classification of Kac representations in the logarithmic minimal models LM(1, p). Nuclear Physics, Section B, 853 (2), 404-435. doi: 10.1016/j.nuclphysb.2011.07.026
Rasmussen, Jorgen (2011). W-extended Kac representations and integrable boundary conditions in the logarithmic minimal models WLM(1, p). Journal Of Physics A-Mathematical And Theoretical, 44 (39 Article No.395205) 395205, 1-26. doi: 10.1088/1751-8113/44/39/395205
On the CFT duals for near-extremal black holes
Rasmussen, Jorgen (2011). On the CFT duals for near-extremal black holes. Modern Physics Letters A11, 26 (22), 1601-1611. doi: 10.1142/S0217732311035973
Coset graphs in bulk and boundary logarithmic minimal models
Pearce, Paul A. and Rasmussen, Jorgen (2011). Coset graphs in bulk and boundary logarithmic minimal models. Nuclear Physics B, 846 (3), 616-649. doi: 10.1016/j.nuclphysb.2011.01.014
On hidden symmetries of extremal Kerr-NUT-AdS-dS black holes
Rasmussen, Jorgen (2011). On hidden symmetries of extremal Kerr-NUT-AdS-dS black holes. Journal of Geometry and Physics, 61 (5), 922-926. doi: 10.1016/j.geomphys.2011.01.006
A near-nhek/cft correspondence
Rasmussen, Jorgen (2010). A near-nhek/cft correspondence. International Journal of Modern Physics A, 25 (30), 5517-5527. doi: 10.1142/S0217751X10051001
Graph fusion algebras of WLM(p,p′)
Rasmussen, Jorgen (2010). Graph fusion algebras of WLM(p,p′). Nuclear Physics, Section B, 830 (3), 493-541. doi: 10.1016/j.nuclphysb.2009.12.033
Fusion matrices, generalized Verlinde formulas and partition functions in WLM(1, p)
Rasmussen, Jorgen (2010). Fusion matrices, generalized Verlinde formulas and partition functions in WLM(1, p). Journal of Physics A: Mathematical and Theoretical, 43 (10) 105201, 105201.1-105201.28. doi: 10.1088/1751-8113/43/10/105201
Isometry-preserving boundary conditions in the kerr/CFT correspondence
Rasmussen, Jorgen (2010). Isometry-preserving boundary conditions in the kerr/CFT correspondence. International Journal of Modern Physics A, 25 (8), 1597-1613. doi: 10.1142/S0217751X10048986
Solvable critical dense polymers on the cylinder
Pearce, Paul A., Rasmussen, Jorgen and Villani, Simon P. (2010). Solvable critical dense polymers on the cylinder. Journal of Statistical Mechanics: Theory and Experiment, 2010 (2) P02010, P02010.1-P02010.43. doi: 10.1088/1742-5468/2010/02/P02010
Fusion of irreducible modules in WLM(p,p')
Rasmussen, Jorgen (2010). Fusion of irreducible modules in WLM(p,p'). Journal of Physics A: Mathematical and Theoretical, 43 (4) 045210, 045210.1-045210.27. doi: 10.1088/1751-8113/43/4/045210
Grothendieck ring and Verlinde-like formula for the W-extended logarithmic minimal model WLM(1, p)
Pearce, Paul A., Rasmussen, Jorgen and Ruelle, Philippe (2010). Grothendieck ring and Verlinde-like formula for the W-extended logarithmic minimal model WLM(1, p). Journal of Physics A: Mathematical and Theoretical, 43 (4) 045211, 045211.1-045211.13. doi: 10.1088/1751-8113/43/4/045211
A note on Kerr/CFT and free fields
Rasmussen, J. (2010). A note on Kerr/CFT and free fields. International Journal of Modern Physics A, 25 (20), 3965-3973. doi: 10.1142/S0217751X10050457
Polynomial fusion rings of W-extended logarithmic minimal models
Rasmussen, Jorgen (2009). Polynomial fusion rings of W-extended logarithmic minimal models. Journal of Mathematical Physics, 50 (4) 043512, 043512.1-043512.46. doi: 10.1063/1.3093265
Geometric exponents, SLE and logarithmic minimal models
Saint-Aubin, Yvan, Pearce, Paul A. and Rasmussen, Jorgen (2009). Geometric exponents, SLE and logarithmic minimal models. Journal of Statistical Mechanics: Theory and Experiment, 2009 (2) P02028, P02028.1-P02028.39. doi: 10.1088/1742-5468/2009/02/P02028
W-extended logarithmic minimal models
Rasmussen, Jorgen (2009). W-extended logarithmic minimal models. Nuclear Physics B, 807 (3), 495-533. doi: 10.1016/j.nuclphysb.2008.07.029
Integrable boundary conditions and W-extended fusion in the logarithmic minimal models LM(1,p)
Pearce, Paul A., Rasmussen, Jorgen and Ruelle, Philippe (2008). Integrable boundary conditions and W-extended fusion in the logarithmic minimal models LM(1,p). Journal of Physics A: Mathematical and Theoretical, 41 (29) 295201, 295201.1-295201.16. doi: 10.1088/1751-8113/41/29/295201
W-extended fusion algebra of critical percolation
Rasmussen, Jorgen and Pearce, Paul A. (2008). W-extended fusion algebra of critical percolation. Journal of Physics A: Mathematical and Theoretical, 41 (29) 295208, 295208.1-295208.30. doi: 10.1088/1751-8113/41/29/295208
Polynomial fusion rings of logarithmic minimal models
Rasmussen, Jorgen and Pearce, Paul A. (2008). Polynomial fusion rings of logarithmic minimal models. Journal of Physics A: Mathematical and Theoretical, 41 (17) 175210, 175210.1-175210.17. doi: 10.1088/1751-8113/41/17/175210
Fusion algebras of logarithmic minimal models
Rasmussen, Jorgen and Pearce, Paul A. (2007). Fusion algebras of logarithmic minimal models. Journal of Physics A: Mathematical and Theoretical, 40 (45), 13711-13733. doi: 10.1088/1751-8113/40/45/013
Fusion algebra of critical percolation
Rasmussen, Jorgen and Pearce, Paul A. (2007). Fusion algebra of critical percolation. Journal of Statistical Mechanics: Theory and Experiment, 2007 (09) P09002, P09002.1-P09002.15. doi: 10.1088/1742-5468/2007/09/P09002
Solvable critical dense polymers
Pearce, Paul A. and Rasmussen, Jorgen (2007). Solvable critical dense polymers. Journal of Statistical Mechanics: Theory and Experiment, 2007 (02) P02015, P02015.1-P02015.32. doi: 10.1088/1742-5468/2007/02/P02015
Jordan cells in logarithmic limits of conformal field theories
Rasmussen, Jorgen (2007). Jordan cells in logarithmic limits of conformal field theories. International Journal of Modern Physics A, 22 (1), 67-82. doi: 10.1142/S0217751X07035136
On SU(2) Wess-Zumino-Witten models and stochastic evolutions
Rasmussen, Jorgen (2007). On SU(2) Wess-Zumino-Witten models and stochastic evolutions. African Journal of Mathematical Physics, 4 (1), 1.1-1.9.
Pearce, Paul A., Rasmussen, Jorgen and Zuber, Jean-Bernard (2006). Logarithmic minimal models. Journal of Statistical Mechanics, 2006 (11 Article #P11017) P11017, P11017-P11017. doi: 10.1088/1742-5468/2006/11/P11017
On ADE quiver models and F-theory compactification
Belhaj, A., Rasmussen, J., Sebbar, A. and Sedra, M. B. (2006). On ADE quiver models and F-theory compactification. Journal of Physics A: Mathematical and General, 39 (29) 024, 9339-9354. doi: 10.1088/0305-4470/39/29/024
Superstring theory on pp waves with ADE geometries
Abounasr, R., Belhaj, A., Rasmussen, J. and Saidi, E. H. (2006). Superstring theory on pp waves with ADE geometries. Journal of Physics A: Mathematical and General, 39 (11), 2797-2841. doi: 10.1088/0305-4470/39/11/015
Affine Jordan cells, logarithmic correlators, and Hamiltonian reduction
Rasmussen, J. (2006). Affine Jordan cells, logarithmic correlators, and Hamiltonian reduction. Nuclear Physics B, 736 (3), 225-258. doi: 10.1016/j.nuclphysb.2005.12.009
On logarithmic solutions to the conformal Ward identities
Rasmussen, Jørgen (2005). On logarithmic solutions to the conformal Ward identities. Nuclear Physics B, 730 (3), 300-311. doi: 10.1016/j.nuclphysb.2005.09.014
Non-commutative ADE geometries as holomorphic wave equations
Belhaj, Adil, Rasmussen, Jørgen, Saidi, El Hassan and Sebbar, Abdellah (2005). Non-commutative ADE geometries as holomorphic wave equations. Nuclear Physics B, 727 (3), 499-512. doi: 10.1016/j.nuclphysb.2005.08.039
On conformal Jordan cells of finite and infinite rank
Rasmussen, J. (2005). On conformal Jordan cells of finite and infinite rank. Letters in Mathematical Physics, 73 (2), 83-90. doi: 10.1007/s11005-005-0001-2
Toric Calabi-Yau supermanifolds and mirror symmetry
Belhaj, A., Drissi, L. B., Rasmussen, J., Saidi, E. H. and Sebbar, A. (2005). Toric Calabi-Yau supermanifolds and mirror symmetry. Journal of Physics A: Mathematical and General, 38 (28), 6405-6418. doi: 10.1088/0305-4470/38/28/013
On toric geometry, Spin(7) manifolds, and type II superstring compactifications
Belhaj, Adil and Rasmussen, Jørgen (2005). On toric geometry, Spin(7) manifolds, and type II superstring compactifications. Journal of Mathematical Physics, 46 (4) 043511, 043511.1-043511.9. doi: 10.1063/1.1873038
On stochastic evolutions and superconformal field theory
Nagi, Jasbir and Rasmussen, Jorgen (2005). On stochastic evolutions and superconformal field theory. Nuclear Physics B, 704 (3), 475-489. doi: 10.1016/j.nuclphysb.2004.10.003
Logarithmic limits of minimal models
Rasmussen, Jorgen (2004). Logarithmic limits of minimal models. Nuclear Physics B, 701 (3), 516-528. doi: 10.1016/j.nuclphysb.2004.08.047
SLE-type growth processes and the Yang-Lee singularity
Lesage, Frédéric and Rasmussen, Jørgen (2004). SLE-type growth processes and the Yang-Lee singularity. Journal of Mathematical Physics, 45 (8), 3040-3048. doi: 10.1063/1.1765747
Stochastic evolutions in superspace and superconformal field theory
Rasmussen, J. (2004). Stochastic evolutions in superspace and superconformal field theory. Letters in Mathematical Physics, 68 (1), 41-52. doi: 10.1007/s11005-004-5100-y
Logarithmic lift of the su(2)-1/2 model
Lesage, F., Mathieu, P., Rasmussen, J. and Saleur, H. (2004). Logarithmic lift of the su(2)-1/2 model. Nuclear Physics B, 686 (3), 313-346. doi: 10.1016/j.nuclphysb.2004.02.039
Note on stochastic Löwner evolutions and logarithmic conformal field theory
Rasmussen, J. (2004). Note on stochastic Löwner evolutions and logarithmic conformal field theory. Journal of Statistical Mechanics: Theory and Experiment, 2004 (9), P09007.1-P09007.9. doi: 10.1088/1742-5468/2004/09/P09007
On string backgrounds and (logarithmic) CFT
Rasmussen, J. (2004). On string backgrounds and (logarithmic) CFT. African Journal of Mathematical Physics, 1 (2), 171-175.
On N=1 gauge models from geometric engineering in M-theory
Belhaj, A., Drissi, L. B. and Rasmussen, J. (2003). On N=1 gauge models from geometric engineering in M-theory. Classical and Quantum Gravity, 20 (23), 4973-4981. doi: 10.1088/0264-9381/20/23/002
N-point and higher-genus osp(1∣2) fusion
Rasmussen, J. (2003). N-point and higher-genus osp(1∣2) fusion. Journal of Mathematical Physics, 44 (4), 1868-1881. doi: 10.1063/1.1557913
The su(2)-1/2 WZW model and the βγ system
Lesage, F., Mathieu, P., Rasmussen, J. and Saleur, H. (2002). The su(2)-1/2 WZW model and the βγ system. Nuclear Physics B, 647 (3), 363-403. doi: 10.1016/S0550-3213(02)00905-7
The (su)over-cap (2)-1/2 WZW model and the beta gamma system
Lesage, F, Mathieu, P, Rasmussen, J and Saleur, H (2002). The (su)over-cap (2)-1/2 WZW model and the beta gamma system. Nuclear Physics B, 647 (3), 363-403. doi: 10.1016/S0550-3213(02)00905-7
Higher-genus su(N) fusion multiplicities as polytope volumes
Flynn, G., Rasmussen, J., Tahic, M. and Walton, M. A. (2002). Higher-genus su(N) fusion multiplicities as polytope volumes. Journal of Physics A: Mathematical and General, 35 (47), 10129-10147. doi: 10.1088/0305-4470/35/47/312
Maximally symmetric D-branes in gauged WZW models
Kubota, T., Rasmussen, J., Walton, M. A. and Zhou, H. G. (2002). Maximally symmetric D-branes in gauged WZW models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 544 (1-2), 192-198. doi: 10.1016/S0370-2693(02)02501-7
Affine su(3) and su(4) fusion multiplicities as polytope volumes
Rasmussen, Jorgen and Walton, Mark A. (2002). Affine su(3) and su(4) fusion multiplicities as polytope volumes. Journal of Physics A: Mathematical and General, 35 (32) 313, 6939-6952. doi: 10.1088/0305-4470/35/32/313
Purely affine elementary su(N) fusions
Rasmussen, J. and Walton, M. A. (2002). Purely affine elementary su(N) fusions. Modern Physics Letters A, 17 (19), 1249-1258. doi: 10.1142/S0217732302007338
A non-reductive N = 4 superconformal algebra
Rasmussen, J. (2002). A non-reductive N = 4 superconformal algebra. Journal of Physics A: Mathematical and General, 35 (8), 2037-2044. doi: 10.1088/0305-4470/35/8/316
Fusion multiplicities as polytope volumes: N-point and higher-genus su(2) fusion
Rasmussen, Jorgen and Walton, Mark A. (2002). Fusion multiplicities as polytope volumes: N-point and higher-genus su(2) fusion. Nuclear Physics B, 620 (3), 537-550. doi: 10.1016/S0550-3213(01)00543-0
su(N) tensor product multiplicities and virtual Berenstein-Zelevinsky triangles
Rasmussen, J. and Walton, M. A. (2001). su(N) tensor product multiplicities and virtual Berenstein-Zelevinsky triangles. Journal of Physics A: Mathematical and Theoretical, 34 (49), 11095-11105. doi: 10.1088/0305-4470/34/49/324
On the level-dependence of Wess-Zumino-Witten three-point functions
Rasmussen, Jorgen and Walton, Mark A. (2001). On the level-dependence of Wess-Zumino-Witten three-point functions. Nuclear Physics B, 616 (3), 517-536. doi: 10.1016/S0550-3213(01)00337-6
Rasmussen, J. and Walton, M. A. (2001). Higher su(N) tensor products. Journal of Physics A: Mathematical and Theoretical, 34 (37), 7685-7699. doi: 10.1088/0305-4470/34/37/318
Fusion in coset CFT from admissible singular-vector decoupling
Mathieu, P., Rasmussen, J. and Walton, M. A. (2001). Fusion in coset CFT from admissible singular-vector decoupling. Nuclear Physics B, 595 (3), 587-604. doi: 10.1016/S0550-3213(00)00674-X
Comments on N = 4 superconformal algebras
Rasmussen, Jorgen (2001). Comments on N = 4 superconformal algebras. Nuclear Physics B, 593 (3), 634-650. doi: 10.1016/S0550-3213(00)00637-4
Constructing classical and quantum superconformal algebras on the boundary of AdS3
Rasmussen, Jorgen (2000). Constructing classical and quantum superconformal algebras on the boundary of AdS3. Nuclear Physics B, 582 (1-3), 649-674. doi: 10.1016/S0550-3213(00)00322-9
Negative screenings in conformal field theory and 2D gravity: the braiding matrix
Rasmussen, J. and Schnittger, J. (2000). Negative screenings in conformal field theory and 2D gravity: the braiding matrix. Nuclear Physics B, 574 (1-2), 525-550. doi: 10.1016/S0550-3213(99)00799-3
Three-point functions in conformal field theory with affine Lie group symmetry
Rasmussen, J. (1999). Three-point functions in conformal field theory with affine Lie group symmetry. International Journal of Modern Physics A, 14 (8), 1225-1259. doi: 10.1142/S0217751X99000634
Explicit decompositions of Weyl reflections in affine Lie algebras
Rasmussen, Jørgen (1998). Explicit decompositions of Weyl reflections in affine Lie algebras. Nuclear Physics B, 518 (3), 632-644. doi: 10.1016/S0550-3213(98)00092-3
Two-point functions in affine SL(N) current algebra
Rasmussen, J (1998). Two-point functions in affine SL(N) current algebra. MODERN PHYSICS LETTERS A, 13 (15), 1213-1221. doi: 10.1142/S0217732398001285
Two-point functions in affine current algebra and conjugate weights
Rasmussen, J (1998). Two-point functions in affine current algebra and conjugate weights. MODERN PHYSICS LETTERS A, 13 (16), 1281-1288. doi: 10.1142/S0217732398001340
Free field realizations of affine current superalgebras, screening currents and primary fields
Rasmussen, Jørgen (1998). Free field realizations of affine current superalgebras, screening currents and primary fields. Nuclear Physics B, 510 (3), 688-720. doi: 10.1016/S0550-3213(97)00693-7
Screening current representation of quantum superalgebras
Rasmussen, J. (1998). Screening current representation of quantum superalgebras. Modern Physics Letters A, 13 (18), 1485-1493. doi: 10.1142/S021773239800156X
Free field realizations of 2D current algebras, screening currents and primary fields
Petersen, J. L., Rasmussen, J. and Yu, M. (1997). Free field realizations of 2D current algebras, screening currents and primary fields. Nuclear Physics B, 502 (3), 649-670.
Petersen, Jens Lyng, Rasmussen, Jorgen and Yu, Ming (1996). Fusion, crossing and monodromy in conformal field theory based on SL(2) current algebra with fractional level. Nuclear Physics B, 481 (3), 577-621. doi: 10.1016/S0550-3213(96)00506-8
Conformal blocks for admissible representations in SL(2) current algebra
Petersen, J. L., Rasmussen, J. and Yu, M. (1995). Conformal blocks for admissible representations in SL(2) current algebra. Nuclear Physics B, 457 (1-2), 309-342. doi: 10.1016/0550-3213(95)00499-8
Hamiltonian reduction of SL(2) theories at the level of correlators
Petersen, J. L., Rasmussen, J. and Yu, M. (1995). Hamiltonian reduction of SL(2) theories at the level of correlators. Nuclear Physics B, 457 (1-2), 343-356. doi: 10.1016/0550-3213(95)00503-X
Petersen, J. L., Rasmussen, J. and Yu, M. (1996). Free field realization of SL(2) correlators for admissible representations, and hamiltonian reduction for correlators. 29th International Symposium Ahrenshoop on the Theory of Elementary Particles, Buckow, Germany, 29 August - 2 September 1995. doi: 10.1016/0920-5632(96)00312-X
Towards logarithmic representation theory of W-algebras
(2021–2024) ARC Discovery Projects
Indecomposable representation theory
(2016–2020) ARC Discovery Projects
Representation theory of diagram algebras and logarithmic conformal field theory
(2012–2015) ARC Future Fellowships
Algebraic aspects of lattice models
Doctor Philosophy — Principal Advisor
Other advisors:
Supersymmetry and Supergravity: New Approaches and Applications
Doctor Philosophy — Associate Advisor
Other advisors:
(2023) Doctor Philosophy — Principal Advisor
Other advisors:
Algebraic aspects of conformal field theory
(2020) Doctor Philosophy — Principal Advisor
W-algebra Representation Theory
(2019) Master Philosophy — Principal Advisor
Other advisors:
Extended Galilean Conformal Algebras in Two Dimensions
(2015) Master Philosophy — Principal Advisor
Other advisors:
A degree-theoretic approach to geometric equations on manifolds with symmetries
(2019) Doctor Philosophy — Associate Advisor
Other advisors:
Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.
Representation theory of infinite-dimensional Lie algebras
Conformal field theory plays a fundamental role in string theory and in the description of phase transitions in statistical mechanics. The basic symmetries of a conformal field theory are generated by infinite-dimensional Lie algebras including the Virasoro algebra. The representation theory of these algebras is a vast and very active area of research in pure mathematics and mathematical physics. Although reducible yet indecomposable representations are of great importance in logarithmic conformal field theory, relatively little is known about them. This project will examine such representations of the Virasoro algebra, of the affine Kac-Moody algebras and of certain classes of so-called W-algebras.
Diagram algebras and integrable lattice models
Diagram algebras offer an intriguing mathematical environment where computations are performed by diagrammatic manipulations. Applications include knot theory and lattice models in statistical mechanics. Important examples of diagram algebras are the Temperley-Lieb algebras which can be used to describe lattice loop models of a large class of two-dimensional physical systems with nonlocal degrees of freedom in terms of extended polymers or connectivities. This project seeks to develop the representation theory of some of these diagram algebras and to apply the results to the corresponding integrable lattice loop models.
Lie superalgebras
Lie algebras, Lie groups, and their representation theories are instrumental in our description of symmetries in physics and elsewhere. They also occupy a central place in pure mathematics where they often provide a bridge between different mathematical structures. Motivated in part by the proposed fundamental role played by supersymmetry in theoretical physics, Lie superalgebras have been introduced as the corresponding generalisations of Lie algebras. The aim of this project is to study Lie superalgebras, their rich representation theory, and some of their applications.
Braid groups
The mathematical notion of a braid was introduced in the formalisation of objects that model the intertwining of strings in three dimensions. The act of braiding strings is thus described by operators that can be composed to form algebraic structures known as braid groups. These groups naturally play an important role in knot theory and low-dimensional topology, but also in representation theory and mathematical physics. This project concerns the algebraic properties of braid groups, their quotients and generalisations thereof, the associated representation theories, and applications to Yang-Baxter integrable systems where the so-called Temperley-Lieb and BMW algebras are of particular interest.
Discrete holomorphicity
Lattice models are key tools in the analysis of a large class of physical systems in statistical mechanics. The inessential artefacts of the lattice are washed out in the continuum scaling limit. In this limit, many so-called critical lattice models in two dimensions are widely believed to be conformally invariant and admit holomorphic observables. However, this has only been established rigorously in very few cases. A key ingredient in these proofs is the introduction of lattice observables satisfying a discrete form of holomorphicity. This project aims to explore and extend recent breakthroughs on these matters. In a variety of lattice models, it will be examined how discrete complex analysis can be used to understand the emergence of holomorphic observables and how the existence of discrete holomorphicity is related to the notion of Yang-Baxter integrability of the lattice models.