Dr Jana Vukovic

Senior Lect in Biomedical Sciences

School of Biomedical Sciences
Faculty of Medicine

Senior Research Fellow

Queensland Brain Institute
j.vukovic@uq.edu.au
+61 7 336 52818

Overview

The Vukovic laboratory investigates how brain function is sculpted and influenced by the immune system. Specifically, we examine the role of brain’s main resident immune cell population (i.e. microglia), as well as various peripheral immune cells, on learning and memory in mice. We are interested in defining the contribution of immune cells to such higher cognitive tasks, including for neuroinflammatory conditions where learning and memory deficits can occur, e.g. following traumatic brain injury, cancer treatment, and ageing. We have established an array of genetic and pharmacological tools alongside robust behavioural assays to directly probe the function of these immune cells in both the healthy and diseased brain. The ultimate goal of our work is to link cellular and molecular events to altered behaviour, and to harness the brain’s intrinsic regenerative potential for stimulating optimal cognitive function.

A neuroimmunologist, Dr Vukovic received her PhD in 2008 from The University of Western Australia after working on the repair of injured nerve cell connections. She joined QBI in 2009 to work in Professor Perry Bartlett’s laboratory as a Postdoctoral Research Fellow, before being awarded a Queensland Government Smart Futures Fellowship to continue her research into the importance of adult neurogenesis for behaviour and how microglia influence this process in ageing. Dr Vukovic demonstrated that microglia can exert a dual and opposing influence over adult neurogenesis (the birth of new neurons) in the hippocampus under different physiological conditions, namely exercise and ageing, and that signalling through the chemokine receptor, CX3CR1, critically contributes towards this (Vukovic et al., 2012, J Neurosci). Dr Vukovic also generated novel evidence that ongoing neurogenesis in the adult hippocampus is critical for new learning but does not play a role in memory recall (Vukovic et al., 2013, J Neurosci).

Dr Vukovic was awarded an ARC Discovery Early Career Researcher Award (2015-2018) and was jointly appointed as a group leader by the UQ School of Biomedical Sciences (SBMS) and QBI in 2015. She heads the Neuroimmunology and Cognition team investigating the interactions between the brain and the immune system in health and disease.

Currently, the group is working on three main projects:

  1. Identification of microglia-derived molecules that support neuronal survival and stimulate neural stem/progenitor cell expansion
  2. Characterisation of immune cell contribution to changes in neuronal connectivity
  3. Immune cell responses to cancer treatment, and their effect on learning and memory

Research Interests

  • microglia
  • neurogenesis
  • learning and memory
  • neuroinflammation
  • Traumatic Brain Injury
  • Ageing
  • Exercise

Qualifications

  • Doctor of Philosophy, The University of Western Australia

Publications

View all Publications

Supervision

  • Doctor Philosophy

  • Doctor Philosophy

  • Doctor Philosophy

View all Supervision

Available Projects

  • We have demonstrated that microglia (brain's resident immune cells) can exert a dual and opposing influence over adult neurogenesis (the birth of new neurons) in the hippocampus under different physiological conditions, namely exercise, ageing and following brain injury. The ultimate goal of our research is to link cellular and molecular events to altered behaviour, and to harness the regenerative potential of adult neurogenesis through immunomodulation to stimulate optimal cognitive function and treat conditions associated with learning and memory deficits.

View all Available Projects

Publications

Journal Article

Conference Publication

Grants (Administered at UQ)

PhD and MPhil Supervision

Current Supervision

  • Doctor Philosophy — Principal Advisor

    Other advisors:

  • Doctor Philosophy — Principal Advisor

  • Doctor Philosophy — Principal Advisor

    Other advisors:

Possible Research Projects

Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.

  • We have demonstrated that microglia (brain's resident immune cells) can exert a dual and opposing influence over adult neurogenesis (the birth of new neurons) in the hippocampus under different physiological conditions, namely exercise, ageing and following brain injury. The ultimate goal of our research is to link cellular and molecular events to altered behaviour, and to harness the regenerative potential of adult neurogenesis through immunomodulation to stimulate optimal cognitive function and treat conditions associated with learning and memory deficits.