Dr Miao Xu

Lecturer - Computer Science

School of Information Technology and Electrical Engineering
Faculty of Engineering, Architecture and Information Technology

Overview

Qualifications

  • Doctor of Philosophy, Nanjing University

Publications

  • Liu, Ji, Li, Zenan, Yao, Yuan, Xu, Feng, Ma, Xiaoxing, Xu, Miao and Tong, Hanghang (2022). Fair Representation Learning: An Alternative to Mutual Information. KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC United States, 14 - 18 August 2022. New York, NY United States: Association for Computing Machinery. doi: 10.1145/3534678.3539302

  • Zhang, Chenhao, Zhang, Yanjun, Mao, Jeff, Chen, Weitong, Yue, Lin, Bai, Guangdong and Xu, Miao (2022). Towards better generalization for neural network-based SAT solvers. 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, 16-19 May 2022. CHAM: Springer Science and Business Media Deutschland GmbH. doi: 10.1007/978-3-031-05936-0_16

  • Tran, Khai Phan, Chen, Weitong and Xu, Miao (2022). Improving traffic load prediction with multi-modality: a case study of Brisbane. 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, 2-4 February 2022. Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-030-97546-3_21

View all Publications

Grants

View all Grants

Supervision

  • Doctor Philosophy

  • Doctor Philosophy

  • Doctor Philosophy

View all Supervision

Publications

Journal Article

Conference Publication

  • Liu, Ji, Li, Zenan, Yao, Yuan, Xu, Feng, Ma, Xiaoxing, Xu, Miao and Tong, Hanghang (2022). Fair Representation Learning: An Alternative to Mutual Information. KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC United States, 14 - 18 August 2022. New York, NY United States: Association for Computing Machinery. doi: 10.1145/3534678.3539302

  • Zhang, Chenhao, Zhang, Yanjun, Mao, Jeff, Chen, Weitong, Yue, Lin, Bai, Guangdong and Xu, Miao (2022). Towards better generalization for neural network-based SAT solvers. 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, 16-19 May 2022. CHAM: Springer Science and Business Media Deutschland GmbH. doi: 10.1007/978-3-031-05936-0_16

  • Tran, Khai Phan, Chen, Weitong and Xu, Miao (2022). Improving traffic load prediction with multi-modality: a case study of Brisbane. 34th Australasian Joint Conference, AI 2021, Sydney, NSW, Australia, 2-4 February 2022. Cham, Switzerland: Springer International Publishing. doi: 10.1007/978-3-030-97546-3_21

  • Han, Kun, Chen, Weitong and Xu, Miao (2022). Investigating active positive-unlabeled learning with deep networks. Australasian Joint Conference on Artificial Intelligence (AI), Electr Network, 2-4 February 2022. Cham, Switzerland: Springer Nature Switzerland. doi: 10.1007/978-3-030-97546-3_49

  • Qiu, Yixuan, Chen, Weitong, Yue, Lin, Xu, Miao and Zhu, Baofeng (2022). STCT: Spatial-temporal conv-transformer network for cardiac arrhythmias recognition. International Conference on Advanced Data Mining and Applications, Sydney, NSW, Australia, 2-4 February 2022. Heidelberg, Germany: Springer. doi: 10.1007/978-3-030-95405-5_7

  • Wang, Yanda, Chen, Weitong, Pi, Dechang, Yue, Lin, Xu, Miao and Li, Xue (2021). Multi-hop reading on memory neural network with selective coverage for medication recommendation. ACM International Conference on Information & Knowledge Management, Virtual Event, 1-5 November 2021. New York, NY, United States: Association for Computing Machinery. doi: 10.1145/3459637.3482278

  • Su, Guangxin, Chen, Weitong and Xu, Miao (2021). Positive-unlabeled learning from imbalanced data. Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 19-27 August 2021. California, United States: International Joint Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2021/412

  • Wang, Yanda, Chen, Weitong, PI, Dechang, Yue, Lin, Wang, Sen and Xu, Miao (2021). Self-supervised adversarial distribution regularization for medication recommendation. Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 19-27 August 2021. California, United States: International Joint Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2021/431

  • Feng, Lei, Shu, Senlin, Lu, Nan, Han, Bo, Xu, Miao, Niu, Gang, An, Bo and Sugiyama, Masashi (2021). Pointwise binary classification with pairwise confidence comparisons. International Conference on Machine Learning (ICML), Virtual, 18-24 July, 2021. San Diego, CA, United States: JMLR.

  • Han, Bo, Niu, Gang, Yu, Xingrui, Yao, Quanming, Xu, Miao, Tsang, Ivor W. and Sugiyama, Masashi (2020). SIGUA: Forgetting may make learning with noisy labels more robust. International Conference on Machine Learning (ICML), Virtual, 13-18 July, 2020. San Diego, CA, United States: JMLR.

  • Lvy, Jiaqi, Xu, Miao, Feng, Lei, Niu, Gang, Geng, Xin and Sugiyama, Masashi (2020). Progressive identification of true labels for partial-label learning. 37th International Conference on Machine Learning (ICML 2020), Vienna, Austria, 12-18 July 2020. International Machine Learning Society.

  • Feng, Lei, Lv, Jiaqi, Han, Bo, Xu, Miao, Niu, Gang, Geng, Xin, An, Bo and Sugiyama, Masashi (2020). Provably consistent partial-label learning. Conference on Neural Information Processing Systems, Vancouver, Canada, 6-12 December 2020. Maryland Heights, MO, United States: Morgan Kaufmann Publishers.

  • Chen, Long, Yao, Yuan, Xu, Feng, Xu, Miao and Tong, Hanghang (2020). Trading personalization for accuracy: data debugging in collaborative filtering. Conference on Neural Information Processing Systems, Vancouver, Canada, 6-12 December 2020. Maryland Heights, MO, United States: Morgan Kaufmann Publishers.

  • Teshima, Takeshi, Xu, Miao, Sato, Issei and Sugiyama, Masashi (2019). Clipped Matrix Completion: A Remedy for Ceiling Effects. Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI United States, 27 January – 1 February 2019. Association for the Advancement of Artificial Intelligence (AAAI). doi: 10.1609/aaai.v33i01.33015151

  • Han, Bo, Yao, Quanming, Yu, Xingrui, Niu, Gang, Xu, Miao, Hu, Weihua, Tsang, Ivor W. and Sugiyama, Masashi (2018). Co-teaching: Robust training of deep neural networks with extremely noisy labels. 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2-8 December, 2018. Maryland Heights, MO, United States: Morgan Kaufmann Publishers. doi: 10.5555/3327757.3327944

  • Huang, Sheng-Jun, Xu, Miao, Xie, Ming-Kun, Sugiyama, Masashi, Niu, Gang and Chen, Songcan (2018). Active Feature Acquisition with Supervised Matrix Completion. 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, July 2018. New York, NY United States: ACM. doi: 10.1145/3219819.3220084

  • Xu, Miao and Zhou, Zhi-Hua (2017). Incomplete Label Distribution Learning. Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, VIC Australia, 19-25 August 2017. Melbourne, VIC Australia: International Joint Conferences on Artificial Intelligence Organization. doi: 10.24963/ijcai.2017/443

  • Xu, Miao, Jin, Rong and Zhou, Zhi-Hua (2015). CUR algorithm for partially observed matrices. 32nd International Conference on Machine Learning, Lille, France, 7-9 July, 2015. San Diego, CA, United States: JMLR.

  • Xu, Miao, Li, Yu-Feng and Zhou, Zhi-Hua (2013). Multi-label learning with PRO LOSS. AAAI-13: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA USA, 14-18 July 2013.

  • Xu, Miao, Jin, Rong and Zhou, Zhi-Hua (2013). Speedup matrix completion with side information: application to multi-label learning. NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, NV USA, 5-10 December 2013. Maryland Heights, MO USA: Morgan Kaufmann Publishers.

Grants (Administered at UQ)

PhD and MPhil Supervision

Current Supervision

  • Doctor Philosophy — Principal Advisor

  • Doctor Philosophy — Principal Advisor

    Other advisors:

  • Doctor Philosophy — Principal Advisor

  • Doctor Philosophy — Principal Advisor

  • Doctor Philosophy — Associate Advisor

    Other advisors:

  • Doctor Philosophy — Associate Advisor

    Other advisors:

  • Doctor Philosophy — Associate Advisor

    Other advisors:

  • Doctor Philosophy — Associate Advisor

  • Doctor Philosophy — Associate Advisor

    Other advisors:

  • Doctor Philosophy — Associate Advisor

  • Doctor Philosophy — Associate Advisor

  • Doctor Philosophy — Associate Advisor