SNARE-mediated protein trafficking in macrophages (2007–2009)

Abstract:
Macrophages are white blood cells that provide front line defence against infection by initiating inflammatory responses by ingesting or phagocytosing microbes and by releasing soluble messengers (cytokines) to recruit other immune cells. These defensive functions require extensive trafficking of proteins within the macrophages. Protein trafficking is orchestrated in part by a family of membrane fusion proteins called SNAREs. By defining the relevant SNAREs, we have recently discovered a much acclaimed and novel pathway that allows efficient, combined cytokine secretion and phagocytosis in macrophages. Our studies proposed here will now expand on this discovery by comparing the phagocytic process, in terms of SNARE-mediated membrane and cytokine trafficking, for a wide range of microbes, highlighting differences that could provide new avenues for drug development. Moreover, since our strategy of using SNAREs to investigate and map trafficking pathways has proven so successful, we will now launch a major large-scale initiative to study ALL SNARE-mediated trafficking pathways in macrophages using a discovery pipeline of assays, including live cell imaging, we have developed. This will provide valuable information on many SNAREs including those associated with disease, and will elucidate trafficking pathways governing all macrophage actions in immunity, including cytokine secretion and antigen presentation. All of these pathways are highly relevant to current drug targets being used clinically or studied in inflammatory disease and for the development of vaccines.
Grant type:
NHMRC Project Grant
Researchers:
  • Professorial Research Fellow - GL
    Institute for Molecular Bioscience
    Affiliated Professor
    School of Biomedical Sciences
    Faculty of Medicine
Funded by:
National Health and Medical Research Council