Professor Kheruntsyan graduated from the Yerevan State University (Armenia, former Soviet Union) in 1988, and received PhD degree in Physics from the Institute for Physical Research of the Armenian Academy of Science in 1993. In 1996, he moved to the University of Queensland to work as a postdoctoral research associate and was subsequently awarded a UQ Postdoctoral Research Fellowship. Following this, he held positions of Lecturer, ARC Senior Research Fellow, Chief Investigator in the ARC Centre of Excellence for Quantum-Atom Optics (2003-2010), ARC Future Fellow (2010-2014), Associate Professor (2015-2017), and is currently Professor in theoretical physics in the School of Mathematics and Physics (SMP).
Journal Article: How to measure the free energy and partition function from atom-atom correlations
Kerr, Matthew L. and Kheruntsyan, Karen V. (2024). How to measure the free energy and partition function from atom-atom correlations. Physical Review A, 109 (3) 033308. doi: 10.1103/physreva.109.033308
Journal Article: The theory of generalised hydrodynamics for the one-dimensional Bose gas
Kerr, Matthew L. and Kheruntsyan, Karen V. (2023). The theory of generalised hydrodynamics for the one-dimensional Bose gas. AAPPS Bulletin, 33 (1) 25, 1-19. doi: 10.1007/s43673-023-00095-2
Journal Article: Fate of the vacuum point and of gray solitons in dispersive quantum shock waves in a one-dimensional Bose gas
Simmons, S. A., Pillay, J. C. and Kheruntsyan, K. V. (2023). Fate of the vacuum point and of gray solitons in dispersive quantum shock waves in a one-dimensional Bose gas. Physical Review A, 108 (1) 013317. doi: 10.1103/physreva.108.013317
Hydrodynamics of quantum fluids
(2024–2026) ARC Discovery Projects
Quantum thermodynamics of ultra-cold atoms
(2019–2023) ARC Discovery Projects
Quantum matter far-from-equilibrium
(2017–2022) ARC Discovery Projects
(2024) Master Philosophy
Equilibrium and nonequilibrium thermodynamics of many-body quantum systems
Doctor Philosophy
Hydrodynamics of ultra-cold quantum gases
(2022) Doctor Philosophy
Quantum thermodynamics of ultracold atomic gases
The Second Quantum Revolution is currently underway, and represents the merging of thermodynamic concepts of heat and work, born during the Industrial Revolution, with quantum concepts of information processing and entanglement. But how do the classical ideas on the nature of heat and work translate to quantum devices? Do the laws of classical thermodynamics also dictate the behaviour of processes at a quantum level, or whether new laws are needed? The project intends to shed light on these fundamental questions by developing state-of-the-art computational models of quantum-scale machines and heat engines using the platform of ultracold atomic gases. Such gases represent arcehtypical examples of interacting many-body systems, however, characterising their equilibrium and nonequilibrium properties is a chellenging problem. The knowledge arising from the project is expected to underpin experimental breakthroughs in this emerging field and aid the development of new quantum technologies.
The project aims to develop theoretical tools to model and understand out-of-equilibrium behaviour of quantum fluids. Such fluids are formed in interacting many-particle systems at ultra-low temperatures, and understanding how these complex systems evolve dynamically when driven out of equilibrium remains a grand-challenge of modern quantum physics. The project intends to study the intriguing dynamical properties of quantum fluids formed by ultra-cold atomic gases, in particular, by atomic Bose and Fermi gases in one-dimensional (1D) waveguides. In such 1D waveguides, and more generally in systems of reduced dimensionality, the effects of quantum and thermal fluctuations are enhanced, compared to three-dimensional systems. As such, theoretical modelling of these systems confronts the challenges of quantum many-body physics heads on. Systems of reduced dimensionality are expected to play an increasingly important role in future quantum technologies, with its ever evolving trend in miniaturisation of electronic devices and precision measurement instruments. The expected outcomes of the project are the knowledge and theoretical tools required to underpin advances in quantum engineering applications, such as the design of quantum heat engines, the control of heat conduction in quantum nanowires and carbon nanotubes, and the fabrication of new energy-efficient materials. Specific sub-projects include:
Macroscopic entanglement and Bell inequality tests with ultracold atoms
The project addresses an open fundamental question in physics of how quantum mechanics applies to systems of mesoscopic and macroscopic sizes. The project will provide theoretical guidance to Australia’s research effort to experimentally demonstrate - for the first time - quantum entanglement between large, spatially separated ensembles of ultracold atoms. Apart from being of quintessential importance to validating some of the foundational principles of quantum mechanics in new realms, controlled generation of large-scale entangled systems is important for harnessing such systems for the development of future quantum devices, as well as for enabling new insights into the unification of quantum theory with gravity.
Phase-space methods for fermions
Corboz, Philippe, Oegren, Magnus, Kheruntsyan, Karen and Corney, Joel F. (2013). Phase-space methods for fermions. Quantum gases: finite temperature and non-equilibrium dynamics. (pp. 407-416) edited by Nick Proukakis, Simon Gardine, Matthew Davis and Marzena Szymańska. London, United Kingdom: Imperial College Press. doi: 10.1142/9781848168121_0027
How to measure the free energy and partition function from atom-atom correlations
Kerr, Matthew L. and Kheruntsyan, Karen V. (2024). How to measure the free energy and partition function from atom-atom correlations. Physical Review A, 109 (3) 033308. doi: 10.1103/physreva.109.033308
The theory of generalised hydrodynamics for the one-dimensional Bose gas
Kerr, Matthew L. and Kheruntsyan, Karen V. (2023). The theory of generalised hydrodynamics for the one-dimensional Bose gas. AAPPS Bulletin, 33 (1) 25, 1-19. doi: 10.1007/s43673-023-00095-2
Simmons, S. A., Pillay, J. C. and Kheruntsyan, K. V. (2023). Fate of the vacuum point and of gray solitons in dispersive quantum shock waves in a one-dimensional Bose gas. Physical Review A, 108 (1) 013317. doi: 10.1103/physreva.108.013317
Benchmarks of generalized hydrodynamics for one-dimensional Bose gases
Watson, R. S., Simmons, S. A. and Kheruntsyan, K. V. (2023). Benchmarks of generalized hydrodynamics for one-dimensional Bose gases. Physical Review Research, 5 (2) L022024, 1-8. doi: 10.1103/physrevresearch.5.l022024
Bayocboc, Jr., Francis A. and Kheruntsyan, Karen V. (2023). Frequency beating and damping of breathing oscillations of a harmonically trapped one-dimensional quasicondensate. Comptes Rendus Physique, 24 (S3), 1-24. doi: 10.5802/crphys.131
A matter-wave Rarity–Tapster interferometer to demonstrate non-locality
Thomas, Kieran F., Henson, Bryce M., Wang, Yu, Lewis-Swan, Robert J., Kheruntsyan, Karen V., Hodgman, Sean S. and Truscott, Andrew G. (2022). A matter-wave Rarity–Tapster interferometer to demonstrate non-locality. European Physical Journal D, 76 (12) 244, 1-18. doi: 10.1140/epjd/s10053-022-00551-y
Phase-space stochastic quantum hydrodynamics for interacting Bose gases
Simmons, S. A., Pillay, J. C. and Kheruntsyan, K. V. (2022). Phase-space stochastic quantum hydrodynamics for interacting Bose gases. Physical Review A, 106 (4) 043309, 1-22. doi: 10.1103/physreva.106.043309
Dynamics of thermalization of two tunnel-coupled one-dimensional quasicondensates
Bayocboc, F. A., Davis, M. J. and Kheruntsyan, K. V. (2022). Dynamics of thermalization of two tunnel-coupled one-dimensional quasicondensates. Physical Review A, 106 (2) 023320, 1-14. doi: 10.1103/physreva.106.023320
Thermalization of a quantum Newton's cradle in a one-dimensional quasicondensate
Thomas, Kieran F., Davis, Matthew J. and Kheruntsyan, Karen V. (2021). Thermalization of a quantum Newton's cradle in a one-dimensional quasicondensate. Physical Review A, 103 (2) 023315. doi: 10.1103/physreva.103.023315
Simmons, S. A., Bayocboc, F. A., Pillay, J. C., Colas, D., McCulloch, I. P. and Kheruntsyan, K. V. (2020). What is a Quantum Shock Wave?. Physical Review Letters, 125 (18) 180401, 1-6. doi: 10.1103/physrevlett.125.180401
Atas, Y. Y., Safavi-Naini, A. and Kheruntsyan, K. V. (2020). Nonequilibrium quantum thermodynamics of determinantal many-body systems: Application to the Tonks-Girardeau and ideal Fermi gases. Physical Review A, 102 (4) 043312, 1-17. doi: 10.1103/physreva.102.043312
Lewis-Swan, R. J. and Kheruntsyan, K. V. (2020). Atomic twin beams and violation of a motional-state Bell inequality from a phase-fluctuating quasicondensate source. Physical Review A, 101 (4) 043615. doi: 10.1103/physreva.101.043615
Finite-temperature dynamics of a Tonks-Girardeau gas in a frequency-modulated harmonic trap
Atas, Y. Y., Simmons, S. A. and Kheruntsyan, K. V. (2019). Finite-temperature dynamics of a Tonks-Girardeau gas in a frequency-modulated harmonic trap. Physical Review A, 100 (4) 043602. doi: 10.1103/physreva.100.043602
Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz
Zill, Jan C., Wright, Tod M., Kheruntsyan, Karen V., Gasenzer, Thomas and Davis, Matthew J. (2018). Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz. Scipost Physics, 4 (2) 011. doi: 10.21468/SciPostPhys.4.2.011
Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas
Atas, Y. Y., Bouchoule, I., Gangardt, D. M. and Kheruntsyan, K. V. (2017). Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas. Physical Review A, 96 (4) 041605. doi: 10.1103/PhysRevA.96.041605
Solving the quantum many-body problem via correlations measured with a momentum microscope
Hodgman, S. S., Khakimov, R. I., Lewis-Swan, R. J., Truscott, A. G. and Kheruntsyan, K. V. (2017). Solving the quantum many-body problem via correlations measured with a momentum microscope. Physical Review Letters, 118 (24) 240402, 240402. doi: 10.1103/PhysRevLett.118.240402
Exact nonequilibrium dynamics of finite-temperature Tonks-Girardeau gases
Atas, Y. Y., Gangardt, D. M., Bouchoule, I. and Kheruntsyan, K. V. (2017). Exact nonequilibrium dynamics of finite-temperature Tonks-Girardeau gases. Physical Review A, 95 (4) 043622. doi: 10.1103/PhysRevA.95.043622
Bouchoule, I., Szigeti, S. S., Davis, M. J. and Kheruntsyan, K. V. (2016). Finite-temperature hydrodynamics for one-dimensional Bose gases: breathing-mode oscillations as a case study. Physical Review A, 94 (5) 051602. doi: 10.1103/PhysRevA.94.051602
Approximate particle number distribution from direct stochastic sampling of the Wigner function
Lewis-Swan, R. J., Olsen, M. K. and Kheruntsyan, K. V. (2016). Approximate particle number distribution from direct stochastic sampling of the Wigner function. Physical Review A, 94 (3) 033814. doi: 10.1103/PhysRevA.94.033814
Quantum-enhanced sensing based on time reversal of nonlinear dynamics
Linnemann, D., Strobel, H., Muessel, W., Schulz, J., Lewis-Swan, R. J., Kheruntsyan, K. V. and Oberthaler, M. K. (2016). Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Physical Review Letters, 117 (1) 013001, 013001. doi: 10.1103/PhysRevLett.117.013001
Zill, Jan C., Wright, Tod M., Kheruntsyan, Karen V., Gasenzer, Thomas and Davis, Matthew J. (2016). A coordinate Bethe ansatz approach to the calculation of equilibrium and nonequilibrium correlations of the one-dimensional Bose gas. New Journal of Physics, 18 (4) 045010, 1-18. doi: 10.1088/1367-2630/18/4/045010
Proposal for a motional-state Bell inequality test with ultracold atoms
Lewis-Swan, R. J. and Kheruntsyan, K. V. (2015). Proposal for a motional-state Bell inequality test with ultracold atoms. Physical Review A (Atomic, Molecular, and Optical Physics), 91 (5) 052114, 052114-1-052114-10. doi: 10.1103/PhysRevA.91.052114
Sudden expansion of a one-dimensional bose gas from power-law traps
Campbell, A. S, Gangardt, D. M. and Kheruntsyan, K. V. (2015). Sudden expansion of a one-dimensional bose gas from power-law traps. Physical Review Letters, 114 (12) 125302, 125302. doi: 10.1103/PhysRevLett.114.125302
Zill, Jan C., Wright, Tod M., Kheruntsyan, Karen V., Gasenzer, Thomas and Davis, Matthew J. (2015). Relaxation dynamics of the Lieb-Liniger gas following an interaction quench: a coordinate Bethe-ansatz analysis. Physical Review A (Atomic, Molecular, and Optical Physics), 91 (2) 023611, 023611-1-023611-17. doi: 10.1103/PhysRevA.91.023611
Anisotropy in s-wave Bose-Einstein condensate collisions and its relationship to superradiance
Deuar, P., Jaskula, J.-C., Bonneau, M., Krachmalnicoff, V., Boiron, D., Westbrook, C. I. and Kheruntsyan, K. V. (2014). Anisotropy in s-wave Bose-Einstein condensate collisions and its relationship to superradiance. Physical Review A - Atomic, Molecular, and Optical Physics, 90 (3) 033613, 033613-1-033613-12. doi: 10.1103/PhysRevA.90.033613
Wright, Tod M., Rigol, Marcos, Davis, Matthew J. and Kheruntsyan, Karén V. (2014). Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables. Physical Review Letters, 113 (5) 050601, 050601. doi: 10.1103/PhysRevLett.113.050601
Proposal for demonstrating the Hong-Ou-Mandel effect with matter waves
Lewis-Swan, R. J. and Kheruntsyan, K. V. (2014). Proposal for demonstrating the Hong-Ou-Mandel effect with matter waves. Nature Communications, 5 (1) 3752, 3752. doi: 10.1038/ncomms4752
Observation of transverse Bose-Einstein condensation via Hanbury Brown-Twiss correlations
RuGway, Wu, Manning, A. G., Hodgman, S. S., Dall, R. G., Truscott, A. G., Lamberton, T. and Kheruntsyan, K. V. (2013). Observation of transverse Bose-Einstein condensation via Hanbury Brown-Twiss correlations. Physical Review Letters, 111 (9) 093601, 093601.1-093601.5. doi: 10.1103/PhysRevLett.111.093601
Sensitivity to thermal noise of atomic Einstein-Podolsky-Rosen entanglement
Lewis-Swan, R. J. and Kheruntsyan, K. V. (2013). Sensitivity to thermal noise of atomic Einstein-Podolsky-Rosen entanglement. Physical Review A, 87 (6) 063635. doi: 10.1103/PhysRevA.87.063635
Ideal n-body correlations with massive particles
Dall, R. G., Manning, A. G., Hodgman, S. S., RuGway, Wu, Kheruntsyan, K. V. and Truscott, A. G. (2013). Ideal n-body correlations with massive particles. Nature Physics, 9 (6), 341-344. doi: 10.1038/NPHYS2632
Two-body momentum correlations in a weakly interacting one-dimensional Bose gas
Bouchoule, I., Arzamasovs, M., Kheruntsyan, K. V. and Gangardt, D. M. (2012). Two-body momentum correlations in a weakly interacting one-dimensional Bose gas. Physical Review A, 86 (3) 033626. doi: 10.1103/PhysRevA.86.033626
Two-body anticorrelation in a harmonically trapped ideal Bose gas
Wright, T. M., Perrin, A., Bray, A., Schmiedmayer, J. and Kheruntsyan, K. V. (2012). Two-body anticorrelation in a harmonically trapped ideal Bose gas. Physical Review A: Atomic, Molecular and Optical Physics, 86 (2) 023618, 023618.1-023618.9. doi: 10.1103/PhysRevA.86.023618
Violation of the Cauchy-Schwarz inequality with matter waves
Kheruntsyan, K. V., Jaskula, J. -C., Deuar, P., Bonneau, M., Partridge, G. B., Ruaudel, J., Lopes, R., Boiron, D. and Westbrook, C. I. (2012). Violation of the Cauchy-Schwarz inequality with matter waves. Physical Review Letters, 108 (26) 260401, 260401.1-260401.5. doi: 10.1103/PhysRevLett.108.260401
Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas
Davis, M. J., Blakie, P. B., van Amerongen, A. H., van Druten, N. J. and Kheruntsyan, K. V. (2012). Yang-Yang thermometry and momentum distribution of a trapped one-dimensional Bose gas. Physical Review A, 85 (3) 031604, 031604.1-031604.5. doi: 10.1103/PhysRevA.85.031604
Resonant cascaded down-conversion
Weedbrook, Christian, Perrett, Ben, Kheruntsyan, Karen V., Drummond, Peter D., Pooser, Raphael C. and Pfister, Oolivier (2012). Resonant cascaded down-conversion. Physical Review A, 85 (3 Article No. 033821) 033821. doi: 10.1103/PhysRevA.85.033821
Stochastic simulations of fermionic dynamics with phase-space representations
Ögren, M., Kheruntsyan, K. V. and Corney, J. F. (2011). Stochastic simulations of fermionic dynamics with phase-space representations. Computer Physics Communications, 182 (9), 1999-2003. doi: 10.1016/j.cpc.2010.10.026
Jacqmin, Thibaut, Armijo, Julien, Berrada, Tarik, Kheruntsyan, Karen V. and Bouchoule, Isabelle (2011). Sub-Poissonian fluctuations in a 1D Bose gas: From the quantum quasicondensate to the strongly interacting regime. Physical Review Letters, 106 (23) 230405, 230405-1-230405-4. doi: 10.1103/PhysRevLett.106.230405
Armijo, J., Jacqmin, T., Kheruntsyan, K. and Bouchoule, I. (2011). Mapping out the quasicondensate transition through the dimensional crossover from one to three dimensions. Physical Review A, 83 (2) 021605, 1-4. doi: 10.1103/PhysRevA.83.021605
Armijo, J., Jacqmin, T., Kheruntsyan, K.V. and Bouchoule, I. (2010). Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations. Physical Review Letters, 105 (23) 230402, 230402-1-230402-4. doi: 10.1103/PhysRevLett.105.230402
Sub-poissonian number differences in four-wave mixing of matter waves
Jaskula, J. -C., Bonneau, M., Partridge, G. B., Krachmalnicoff, V., Deuar, P., Kheruntsyan, K. V., Aspect, A., Boiron, D. and Westbrook, C. I. (2010). Sub-poissonian number differences in four-wave mixing of matter waves. Physical Review Letters, 105 (19) 190402, 19402-1-19402-4. doi: 10.1103/PhysRevLett.105.190402
First-principles quantum dynamics for fermions: Application to molecular dissociation
Ogren, M., Kheruntsyan, K.V. and Corney, J.F. (2010). First-principles quantum dynamics for fermions: Application to molecular dissociation. Europhysics Letters, 92 (3) 36003, 36003-1-36003-6. doi: 10.1209/0295-5075/92/36003
Role of spatial inhomogeneity in dissociation of trapped molecular condensates
Ogren, Mangus and Kheruntsyan, K. V. (2010). Role of spatial inhomogeneity in dissociation of trapped molecular condensates. Physical Review A, 82 (1) 013641, 1-21. doi: 10.1103/PhysRevA.82.013641
Spontaneous four-wave mixing of de Broglie waves: Beyond optics
Krachmalnicoff, V., Jaskula, J.-C., Bonneau, M., Leung, V., Partridge, G. B., Boiron, D., Westbrook, C. I., Deuar, P., Zín, P., Trippenbach, M. and Kheruntsyan, K. V. (2010). Spontaneous four-wave mixing of de Broglie waves: Beyond optics. Physical Review Letters, 104 (15) 150402, 150402-1-150402-4. doi: 10.1103/PhysRevLett.104.150402
Midgley, S. L. W., Wüster, S., Olsen, M. K., Davis, M. J. and Kheruntsyan, K. V. (2009). Comparative study of dynamical simulation methods for the dissociation of molecular Bose-Einstein condensates. Physical Review A, 79 (5) 053632, 053632-1-053632-10. doi: 10.1103/PhysRevA.79.053632
Directional effects due to quantum statistics in dissociation of elongated molecular condensates
Ogren, Magnus, Savage, C. M. and Kheruntsyan, K. V. (2009). Directional effects due to quantum statistics in dissociation of elongated molecular condensates. Physical Review A: Atomic, Molecular and Optical Physics, 79 (4) 043624, 043624-1-043624-6. doi: 10.1103/PhysRevA.79.043624
Nonlocal pair correlations in the one-dimensional Bose gas at finite temperature
Deuar, P., Sykes, A. G., Gangardt, D. M., Davis, M. J., Drummond, P. D. and Kheruntsyan, K. V. (2009). Nonlocal pair correlations in the one-dimensional Bose gas at finite temperature. Physical Review A, 79 (4) 043619, 043619-1-043619-20. doi: 10.1103/PhysRevA.79.043619
Atom-atom correlations in colliding Bose-Einstein condensates
Ogren, Magnus and Kheruntsyan, K. V (2009). Atom-atom correlations in colliding Bose-Einstein condensates. Physical Review A, 79 (2) 021606, 021606-1-021606-4. doi: 10.1103/PhysRevA.79.021606
Ögren, Magnus and Kheruntsyan, K. V. (2008). Atom-atom correlations and relative number squeezing in dissociation of spatially inhomogeneous molecular condensates. Physical Review A: Atomic, Molecular and Optical Physics, 78 (1) 011602, 011602.1-011602.4. doi: 10.1103/PhysRevA.78.011602
Atomic four-wave mixing via condensate collisions
Perrin, A., Savage, C. M., Boiron, D., Krachmalnicoff, V., Westbrook, C. I. and Kheruntsyan, K. V. (2008). Atomic four-wave mixing via condensate collisions. New Journal of Physics, 10 (4) 045021, Article Number: 045021. doi: 10.1088/1367-2630/10/4/045021
Spatial nonlocal pair correlations in a repulsive 1D Bose gas
Sykes, A. G., Gangardt, D. M., Davis, M. J., Viering, K., Raizen, M. G. and Kheruntsyan, K. V. (2008). Spatial nonlocal pair correlations in a repulsive 1D Bose gas. Physical Review Letters, 100 (16) 160406, 160406-1-160406-4. doi: 10.1103/PhysRevLett.100.160406
Yang-Yang thermodynamics on an atom chip
van Amerongen, A. H., van Es, J. J. P., Wicke, P., Kheruntsyan, K. V. and van Druten, N. J. (2008). Yang-Yang thermodynamics on an atom chip. Physical Review Letters, 100 (9) 090402, 090402-1-090402-4. doi: 10.1103/PhysRevLett.100.090402
Pairing mean-field theory for the dynamics of dissociation of molecular Bose-Einstein condensates.
Davis, M. J., Thwaite, S. J., Olsen, M. K. and Kheruntsyan, K. V (2008). Pairing mean-field theory for the dynamics of dissociation of molecular Bose-Einstein condensates.. Physical Review A (Atomic, Molecular and Optical Physics), 77 (2) 023617, 023617-1-023617-16. doi: 10.1103/PhysRevA.77.023617
Spatial Pair Correlations Of Atoms In Molecular Dissociation
Savage, C. M and Kheruntsyan, Karen (2007). Spatial Pair Correlations Of Atoms In Molecular Dissociation. Physical Review Letters, 99 (22) 220404, 220404-1-220404-4. doi: 10.1103/PhysRevLett.99.220404
Bouchoule, I., Kheruntsyan, K. V. and Shlyapnikov, G. V. (2007). Interaction-induced Crossover Versus Finite-size Condensation In A Weakly Interacting Trapped One-dimensional Bose Gas. Physical Review A, 75 (3) 031606, 031606-1-031606-4. doi: 10.1103/PhysRevA.75.031606
Savage, C. M., Schwenn, P. E. and Kheruntsyan, K. V. (2006). First-principles quantum simulations of dissociation of molecular condensates: Atom correlations in momentum space. Physical Review A, 74 (3) 033620, 033620-1-033620-16. doi: 10.1103/PhysRevA.74.033620
Quantum atom optics with fermions from molecular dissociation
Kheruntsyan, K. V. (2006). Quantum atom optics with fermions from molecular dissociation. Physical Review Letters, 96 (11) 110401, 110401-1-110401-4. doi: 10.1103/PhysRevLett.96.110401
Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate
Kheruntsyan, K. V., Olsen, M. K. and Drummond, P. D. (2005). Einstein-Podolsky-Rosen correlations via dissociation of a molecular Bose-Einstein condensate. Physical Review Letters, 95 (15) 150405, 150405-1-150405-4. doi: 10.1103/PhysRevLett.95.150405
Kheruntsyan, Karen V. (2005). Matter-wave amplification and phase conjugation via stimulated dissociation of a molecular Bose-Einstein condensate. Physical Review A, 71 (5) 053609, 053609-1-053609-4. doi: 10.1103/PhysRevA.71.053609
Kheruntsyan, K. V., Gangardt, D. M., Drummond, P. D. and Shlyapnikov, G. V. (2005). Finite-temperature correlations and density profiles of an inhomogeneous interacting one-dimensional Bose gas. Physical Review A, 71 (5) 053615, 053615-1-053615-17. doi: 10.1103/PhysRevA.71.053615
Mackie, Matt, Collin, Anssi, Javanainen, Juha, Drummond, P. D., Kheruntsyan, K. V., Heinzen, D. J. and Wynar, R. H. (2005). Comment on "Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate". Physical Review A - Atomic, Molecular, and Optical Physics, 71 (1) 017601. doi: 10.1103/PhysRevA.71.017601
Drummond, P. D., Kheruntsyan, K. V., Heinzen, D. J. and Wynar, R. H. (2005). Reply to "Comment on 'Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate' ". Physical Review A, 71 (1) 017602, 017602-1-017602-3. doi: 10.1103/PhysRevA.71.017602
Three-dimensional solitons in coupled atomic-molecular Bose-Einstein condensates
Vaughan, T. G., Kheruntsyan, K. V. and Drummond, P. D. (2004). Three-dimensional solitons in coupled atomic-molecular Bose-Einstein condensates. Physical Review A, 70 (6) 063611, 063611-063624. doi: 10.1103/PhysRevA.70.063611
Canonical Bose gas simulations with stochastic gauges
Drummond, P. D., Deuar, P. and Kheruntsyan, K. V. (2004). Canonical Bose gas simulations with stochastic gauges. Physical Review Letters, 92 (4), 040405-1-040405-4. doi: 10.1103/PhysRevLett.92.040405
Coherent molecular bound states of bosons and fermions near a Feshback resonance
Drummond, P. D. and Kheruntsyan, K. V. (2004). Coherent molecular bound states of bosons and fermions near a Feshback resonance. Physical Review A, 70 (3) 033609, 033609-1-033609-4. doi: 10.1103/PhysRevA.70.033609
Pair correlations in a finite-temperature 1D Bose gas
Kheruntsyan, K. V., Gangardt, D. M., Drummond, P. D. and Shlyapnikov, G. V. (2003). Pair correlations in a finite-temperature 1D Bose gas. Physical Review Letters, 91 (4), 040403-1-040403-4. doi: 10.1103/PhysRevLett.91.040403
Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate
Drummond, P. D., Kheruntsyan, K. V., Heinzen, D. J. and Wyanar, R. H. (2002). Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate. Physical Review A, 65 (6) 063619, 063619-1-063619-14. doi: 10.1103/PhysRevA.65.063619
Quantum correlated twin atomic beams via photodissociation of a molecular Bose-Einstein condensate
Kheruntsyan, K. V. and Drummond, P. D. (2002). Quantum correlated twin atomic beams via photodissociation of a molecular Bose-Einstein condensate. Physical Review A - Atomic, Molecular, and Optical Physics, 66 (3). doi: 10.1103/PhysRevA.66.031602
Quantum correlated twin atomic beams via photodissociation of a molecular Bose-Einstein condensate
Kheruntsyan, K. V. and Drummond, P. D. (2002). Quantum correlated twin atomic beams via photodissociation of a molecular Bose-Einstein condensate. Physical Review A (Atomic, Molecular and Optical Physics), 66 (3) 031602, 031602-1-031602-4. doi: 10.1103/PhysRevA.66.031602
Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate
Drummond, P. D. and Kheruntsyan, K. V. (2001). Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate. Physical Review A, 63 (1), 013605-1-013605-5. doi: 10.1103/PhysRevA.63.013605
Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate
Drummond, P. D. and Kheruntsyan, K. V. (2001). Asymptotic solutions to the Gross-Pitaevskii gain equation: Growth of a Bose-Einstein condensate. Physical Review A - Atomic, Molecular, and Optical Physics, 63 (1) 013605, 1-5. doi: 10.1103/PhysRevA.63.013605
Theory of a mode-locked atom laser with toroidal geometry
Drummond, P. D., Eleftheriou, A., Huang, K. and Kheruntsyan, K. V. (2001). Theory of a mode-locked atom laser with toroidal geometry. Physical Review A, 63 (5) 053602, art. no.-053602. doi: 10.1103/PhysRevA.63.053602
Exact steady-state Wigner function for a nondegenerate parametric oscillator
Kheruntsyan, K. V. and Petrosyan, K. G. (2000). Exact steady-state Wigner function for a nondegenerate parametric oscillator. Physical Review A, 62 (1), 015801-015801. doi: 10.1103/PhysRevA.62.015801
Exact steady-state Wigner function for a nondegenerate parametric oscillator
Kheruntsyan, K. V. and Petrosyan, K. G. (2000). Exact steady-state Wigner function for a nondegenerate parametric oscillator. Physical Review A, 62 (1), 1-4. doi: 10.1103/PhysRevA.62.015801
Superchemistry: dynamics of coupled atomic and molecular Bose condensates
Heinzen, D. J., Wynar, Roahn, Drummond, P. D. and Kheruntsyan, K. V. (2000). Superchemistry: dynamics of coupled atomic and molecular Bose condensates. Physical Review Letters, 84 (22), 5029-5033. doi: 10.1103/PhysRevLett.84.5029
Exact steady-state Wigner function for a nondegenerate parametric oscillator
Kheruntsyan, K. V. and Petrosyan, K. G. (2000). Exact steady-state Wigner function for a nondegenerate parametric oscillator. Physical Review A - Atomic, Molecular, and Optical Physics, 62 (1) 015801, 1-4. doi: 10.1103/PhysRevA.62.015801
Kheruntsyan, K. V. and Drummond, P. D. (2000). Multidimensional quantum solitons with nondegenerate parametric interactions: Photonic and Bose-Einstein condensate environments. Physical Review A, 61 (063816), 063816-1-063816-20. doi: 10.1103/PhysRevA.61.063816
Kheruntsyan, K. V. and Drummond, P. D. (2000). Multidimensional quantum solitons with nondegenerate parametric interactions: photonic and Bose-Einstein condensate environments. Physical Review A - Atomic, Molecular, and Optical Physics, 61 (6), 063816-063811.
Novel solitons in parametric amplifiers and atom lasers
Drummond, P. D., Kheruntsyan, K. and He, H. (1999). Novel solitons in parametric amplifiers and atom lasers. Journal of Optics B - Quantum and Semiclassical Optics, 1 (4), 387-395. doi: 10.1088/1464-4266/1/4/306
Wigner function for a driven anharmonic oscillator
Kheruntsyan, K. (1999). Wigner function for a driven anharmonic oscillator. Journal of Optics B: Quantum and Semiclassical Optics, 1 (2), 225-233. doi: 10.1088/1464-4266/1/2/005
Coherent molecular solitons in Bose-Einstein condensates
Drummond, PD, Kheruntsyan, KV and He, H (1998). Coherent molecular solitons in Bose-Einstein condensates. Physical Review Letters, 81 (15), 3055-3058. doi: 10.1103/PhysRevLett.81.3055
Controlling instability and squeezing from a cascaded frequency doubler
Kheruntsyan, K. V., Kryuchkyan, G. Y., Mouradyan, N. T. and Petrosyan, K. G. (1998). Controlling instability and squeezing from a cascaded frequency doubler. Physical Review a, 57 (1), 535-547. doi: 10.1103/PhysRevA.57.535
Multidimensional parametric quantum solitons
Kheruntsyan, KV and Drummond, PD (1998). Multidimensional parametric quantum solitons. Physical Review A, 58 (4), R2676-R2679. doi: 10.1103/PhysRevA.58.R2676
Three-dimensional quantum solitons with parametric coupling
Kheruntsyan, KV and Drummond, PD (1998). Three-dimensional quantum solitons with parametric coupling. Physical Review A, 58 (3), 2488-2499. doi: 10.1103/PhysRevA.58.2488
Kheruntsyan, KV, Krahmer, DS, Kryuchkyan, GY and Petrossian, KG (1997). Wigner function for a generalized model of a parametric oscillator: Phase-space tristability, competition and nonclassical effects. Optics Communications, 139 (1-3), 157-164. doi: 10.1016/S0030-4018(96)00753-5
Noise, instability and squeezing in third harmonic generation
Gevorkyan, ST, Kryuchkyan, GY and Kheruntsyan, KV (1997). Noise, instability and squeezing in third harmonic generation. Optics Communications, 134 (1-6), 440-446. doi: 10.1016/S0030-4018(96)00520-2
Critical phenomena and quantum statistics due to the 4-wave interaction
Kryuchkyan, GY and Kheruntsyan, KV (1996). Critical phenomena and quantum statistics due to the 4-wave interaction. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 110 (5), 1589-1607.
Exact quantum theory of a parametrically driven dissipative anharmonic oscillator
Kryuchkyan, GY and Kheruntsyan, KV (1996). Exact quantum theory of a parametrically driven dissipative anharmonic oscillator. Optics Communications, 127 (4-6), 230-236. doi: 10.1016/0030-4018(96)00021-1
Critical effects in photon correlation for parametric generation
Kryuchkyan, GY, Petrosyan, KG and Kheruntsyan, KV (1996). Critical effects in photon correlation for parametric generation. Jetp Letters, 63 (7), 526-531. doi: 10.1134/1.567060
Exact quantum treatment of the parametric chi((3))-interaction
Kryuchkyan, GY, Kheruntsyan, KV, Papanyan, VO and Petrossian, KG (1995). Exact quantum treatment of the parametric chi((3))-interaction. Quantum and Semiclassical Optics, 7 (6), 965-973. doi: 10.1088/1355-5111/7/6/005
Kryuchkyan, GY and Kheruntsyan, KV (1995). 4-Wave-Mixing with Nondegenerate Pumps - Steady-States and Squeezing in the Presence of Phase Modulation. Quantum and Semiclassical Optics, 7 (4), 529-539. doi: 10.1088/1355-5111/7/4/010
Parametric Oscillation in 4-Wave-Mixing with Nondegenerate Pump
Kryuchkyan, GY, Petrossian, KG and Kheruntsyan, KV (1995). Parametric Oscillation in 4-Wave-Mixing with Nondegenerate Pump. Kvantovaya Elektronika, 22 (6), 599-604.
Kryuchkyan, GY and Kheruntsyan, KV (1994). Phase-Dependent Correlations and Intense Squeezed-Light Spectra in Above-the-Threshold Mode of 4-Wave-Mixing. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 105 (5), 1161-1180.
Nonlinear Dynamics and Generation of Nonclassic Light in 2 Laser Fields
Kryuchkyan, GY and Kheruntsyan, KV (1993). Nonlinear Dynamics and Generation of Nonclassic Light in 2 Laser Fields. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 103 (1), 18-39.
Squeezing in Intracavity 4-Wave-Mixing with Nondegenerate Pumps
Kryuchkyan, GY and Kheruntsyan, KV (1992). Squeezing in Intracavity 4-Wave-Mixing with Nondegenerate Pumps. Quantum Optics, 4 (5), 289-302. doi: 10.1088/0954-8998/4/5/005
Drampyan, RK, Kryuchkyan, GY and Kheruntsyan, KV (1992). Statistics of Energy Fluctuations and Spatial-Distribution of Strokes-Pulse Intensities in Srs Stationary Mode. Optika I Spektroskopiya, 73 (4), 713-718.
Sub Shot-Noise Fluctuations in the Intensity Sum of 2 Coupled Beams
Kryuchkyan, GY and Kheruntsyan, KV (1992). Sub Shot-Noise Fluctuations in the Intensity Sum of 2 Coupled Beams. Optics Communications, 93 (5-6), 328-332. doi: 10.1016/0030-4018(92)90194-V
Squeezing Spectrum for Radiation of Atoms in 2 Laser Fields
Kryuchkyan, GY and Kheruntsyan, KV (1992). Squeezing Spectrum for Radiation of Atoms in 2 Laser Fields. Optics Communications, 87 (4), 181-185. doi: 10.1016/0030-4018(92)90010-O
Quantum Effects of Optical Correlation in Parametric Generation
Kryuchkyan, GY and Kheruntsyan, KV (1991). Quantum Effects of Optical Correlation in Parametric Generation. Optika I Spektroskopiya, 70 (3), 644-647.
Quantum Effects of Intensity Interference in Parametric Amplification
Kryuchkyan, GY and Kheruntsyan, KV (1990). Quantum Effects of Intensity Interference in Parametric Amplification. Optika I Spektroskopiya, 69 (3), 692-697.
Kheruntsyan, K. V., Jacqmin, T., Armijo, J., Berrada, T. and Bouchoule, I. (2011). Sub-poissonian fluctuations in a 1D bose gas: From quantum quasi-condensate to the strongly interacting regime. International Quantum Electronics Conference, IQEC 2011, Sydney, Australia, 28 August - 1 September 2011. Washington, DC, United States: OSA—The Optical Society.
Collisions of Bose-Einstein condensates of metastable helium: recent results
Krachmalnicoff, Valentina, Jaksula, Jean-Christophe, Partridge, Guthrie, Bonneau, Marie, Boiron, Denis, Westbrook, Chris, Deuar, Piotr and Kheruntsyan, Karen (2009). Collisions of Bose-Einstein condensates of metastable helium: recent results. ACOLS ACOFT 09, The University of Adelaide, 29/11/09 - 3/12/09. South Australia: The University of Adelaide.
Exact quantum dynamics of the dissociation of molecular BEC into fermionic atoms
Ogren, Magnus, Kheruntsyan, Karen and Corney, Joel (2009). Exact quantum dynamics of the dissociation of molecular BEC into fermionic atoms. ACOLS ACOFT 09, The University of Adelaide, 29/11/09 - 3/12/09. South Australia: The University of Adelaide.
Role of spatial inhomogeneity in dissociation of trapped molecular condensates
Ogren, Magnus and Kheruntsyan, Karen (2009). Role of spatial inhomogeneity in dissociation of trapped molecular condensates. ACOLS ACOFT 09, The University of Adelaide, 29/11/09 - 3/12/09. South Australia: The University of Adelaide.
Atomic four-wave mixing via condensates collisions
Perrin, A., Savage, C. M., Krachmalnicoff, V., Boiron, D., Aspect, A., Westbrook, C. I. and Kheruntsyan, K. V. (2007). Atomic four-wave mixing via condensates collisions. Quantum-Atom Optics Downunder, QAO 2007, Wollongong, NSW Australia, 3- 6 December 2007. Optical Society of America.
Non-local pair correlations and quasi-crystalline phases in a 1D bose gas
Sykes, A. G., Gangardt, D. M., Davis, M. J. and Kheruntsyan, K. V. (2007). Non-local pair correlations and quasi-crystalline phases in a 1D bose gas. Quantum-Atom Optics Downunder 2007, Wollongong, NSW, Australia, 3–6 December 2007. Optical Society of America (OSA). doi: 10.1364/QAO.2007.QME17
Stochastic gauge: A new technique for quantum simulations
Drummond, P. D., Deuar, P. P., Corney, J. F. and Kheruntsyan, K. (2004). Stochastic gauge: A new technique for quantum simulations. XVI International Confererence of Laser Spectroscopy, Palm Cove, Queensland Australia, 13-18 July 2003. Singapore: World Scientific. doi: 10.1142/9789812703002_0024
Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate
Drummond, P. D. and Kheruntsyan, K. V. (2001). Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate. Quantum Electronics and Laser Science Conference, QELS 2001, Baltimore, MD United States, 6- 11 May 2001. Piscataway, NJ United States: Institute of Electrical and Electronics Engineers. doi: 10.1109/QELS.2001.962158
How to mode-lock an atom laser
Drummond, P. D., Huang, K. and Kheruntsyan, K. (2000). How to mode-lock an atom laser. QELS 2000, The Moscone Convention Center, San Francisco, California, 7-12 May, 2000. US: Optical Society of America.
Quantum and classical solitons with a two-component Bose gas
Drummond, P. D., Kheruntsyan, K., Bremner, M. J. and Myers, C. (2000). Quantum and classical solitons with a two-component Bose gas. 2000 IQEC, Nice Acropolis, France, 10-15 September, 2000. US: IEEE. doi: 10.1109/iqec.2000.907981
STIRAP in coupled atomic and molecular superchemistry
Drummond, P. D. and Kheruntsyan, K. (2000). STIRAP in coupled atomic and molecular superchemistry. AIP2000, Adelaide University, 10-15 Dec, 2000. Australia: Australian Institute of Physics.
Coherent atomic-molecular simultons in BEC
Drummond, P. D., Kheruntsyan, K. and He, H. (1999). Coherent atomic-molecular simultons in BEC. Quantum Electronics and Laser Science Conference 1999, Baltimore, USA, 23-28 May, 1999. USA: Optical Society of America, American Physical Society. doi: 10.1109/qels.1999.807141
Super-chemistry: Coherent dynamics of atom-molecular Bose condensates
Heinzen, D. J., Drummond, P. D. and Kheruntsyan, K. (1999). Super-chemistry: Coherent dynamics of atom-molecular Bose condensates. Quantum Electronics and Laser Science Conference 1999, Baltimore, USA, 23-28 May, 1999. USA: Optical Society of America, American Physical Society.
Superchemistry:Coherent dynamics of coupled atom-molecular bose condensates
Heinzen, D. J., Drummond, P. D. and Kheruntsyan, K. (1999). Superchemistry:Coherent dynamics of coupled atom-molecular bose condensates. 1999 Centenial Meeting, Atlanta, Georgia, 20-26 March, 1999. USA: American Physical Society.
Optical `mesons' and `hadrons'
Drummond P.D., He H. and Kheruntsyan K. (1997). Optical `mesons' and `hadrons'. Proceedings of the 1997 Pacific Rim Conference on Lasers and Electro-Optics, CLEO/Pacific Rim, Chiba, Jpn, July 14, 1997-July 18, 1997. doi: 10.1109/cleopr.1997.610475
Computer Physics Communications
Computer Physics Communications. (2001). 142 (1-3)
Hydrodynamics of quantum fluids
(2024–2026) ARC Discovery Projects
Quantum thermodynamics of ultra-cold atoms
(2019–2023) ARC Discovery Projects
Quantum matter far-from-equilibrium
(2017–2022) ARC Discovery Projects
Advanced Superfluid Physics Facility
(2015–2016) UQ Major Equipment and Infrastructure
Emergent physics in quantum transport with ultracold atoms
(2014–2016) ARC Discovery Projects
Einstein-Podolsky-Rosen entanglement in ultracold atomic gases
(2014–2015) Go8 Australia - Germany Joint Research Co-operation Scheme
Quantum nonlocality tests with ultracold atoms (ARC Discovery Project administered by ANU)
(2012–2014) Australian National University
Fundamental tests of quantum mechanics with ultracold atomic gases
(2011–2014) ARC Future Fellowships
(2011–2013) ARC Discovery Projects
ResTeach 2011 0.05 FTE School of Mathematics and Physics
(2011–2013) UQ ResTeach
Quantum correlations in ultra-cold Fermi gases
(2006–2009)
Quantum Many-Body Systems Network: Breakthrough Science and Frontier Technologies
(2004) ARC Seed Funding for Research Networks
ARC Centre of Excellence for Quantum-Atom Optics (ANU lead institution)
(2003–2010) ARC Centres of Excellence
Quantum correlations in degenerate Bose gases
(2002) University of Queensland Research Development Grants Scheme
(2001) UQ Early Career Researcher
Coherent Bosonization in Quantum Fermi Gases.
(2000) ARC Australian Research Council (Small grants)
Vortices and solitons in Bose-Einstein condensates
(1999) ARC Australian Research Council (Small grants)
Equilibrium and nonequilibrium thermodynamics of many-body quantum systems
Doctor Philosophy — Principal Advisor
Other advisors:
Finite temperature ideal gas hybrid machine
Master Philosophy — Associate Advisor
Other advisors:
(2024) Master Philosophy — Principal Advisor
Hydrodynamics of ultra-cold quantum gases
(2022) Doctor Philosophy — Principal Advisor
Other advisors:
Quench dynamics and relaxation of one-dimensional Bose gases
(2021) Doctor Philosophy — Principal Advisor
Other advisors:
Ultracold atoms for foundational tests of quantum mechanics
(2015) Doctor Philosophy — Principal Advisor
Other advisors:
Quantum-Atom Optics and Dynamical Simulations of Fermionic Many-Body Systems
(2011) Doctor Philosophy — Principal Advisor
Other advisors:
Formation Dynamics and Phase Coherence of Bose-Einstein Condensates
(2012) Doctor Philosophy — Joint Principal Advisor
Other advisors:
(2023) Master Philosophy — Associate Advisor
Other advisors:
Non-Equilibrium Dynamics of Bose Einstein Condensates
(2017) Doctor Philosophy — Associate Advisor
Other advisors:
Nonequilibrium dynamics of a one-dimensional Bose gas via the coordinate Bethe ansatz
(2017) Doctor Philosophy — Associate Advisor
Other advisors:
Continuous-variable entanglement in quantum many-body nonlinear bosonic systems
(2011) Doctor Philosophy — Associate Advisor
Other advisors:
A study of one dimensional quantum gases
(2010) Doctor Philosophy — Associate Advisor
Other advisors:
Quantum Coherence in Degenerate Bose Gases
(2008) Doctor Philosophy — Associate Advisor
Reality, Locality and All That: Studies on experimental metaphysics and the quantum foundations
(2008) Doctor Philosophy — Associate Advisor
First-principles Quantum Simulations of Many-mode Open Interacting Bose Gases Using Stochastic Gauge Methods.
(2005) Doctor Philosophy — Associate Advisor
PHOTONIC SWITCHING WITH Chi-2 SOLITONS
(2003) Doctor Philosophy — Associate Advisor
Note for students: The possible research projects listed on this page may not be comprehensive or up to date. Always feel free to contact the staff for more information, and also with your own research ideas.
Quantum thermodynamics of ultracold atomic gases
The Second Quantum Revolution is currently underway, and represents the merging of thermodynamic concepts of heat and work, born during the Industrial Revolution, with quantum concepts of information processing and entanglement. But how do the classical ideas on the nature of heat and work translate to quantum devices? Do the laws of classical thermodynamics also dictate the behaviour of processes at a quantum level, or whether new laws are needed? The project intends to shed light on these fundamental questions by developing state-of-the-art computational models of quantum-scale machines and heat engines using the platform of ultracold atomic gases. Such gases represent arcehtypical examples of interacting many-body systems, however, characterising their equilibrium and nonequilibrium properties is a chellenging problem. The knowledge arising from the project is expected to underpin experimental breakthroughs in this emerging field and aid the development of new quantum technologies.
The project aims to develop theoretical tools to model and understand out-of-equilibrium behaviour of quantum fluids. Such fluids are formed in interacting many-particle systems at ultra-low temperatures, and understanding how these complex systems evolve dynamically when driven out of equilibrium remains a grand-challenge of modern quantum physics. The project intends to study the intriguing dynamical properties of quantum fluids formed by ultra-cold atomic gases, in particular, by atomic Bose and Fermi gases in one-dimensional (1D) waveguides. In such 1D waveguides, and more generally in systems of reduced dimensionality, the effects of quantum and thermal fluctuations are enhanced, compared to three-dimensional systems. As such, theoretical modelling of these systems confronts the challenges of quantum many-body physics heads on. Systems of reduced dimensionality are expected to play an increasingly important role in future quantum technologies, with its ever evolving trend in miniaturisation of electronic devices and precision measurement instruments. The expected outcomes of the project are the knowledge and theoretical tools required to underpin advances in quantum engineering applications, such as the design of quantum heat engines, the control of heat conduction in quantum nanowires and carbon nanotubes, and the fabrication of new energy-efficient materials. Specific sub-projects include:
Macroscopic entanglement and Bell inequality tests with ultracold atoms
The project addresses an open fundamental question in physics of how quantum mechanics applies to systems of mesoscopic and macroscopic sizes. The project will provide theoretical guidance to Australia’s research effort to experimentally demonstrate - for the first time - quantum entanglement between large, spatially separated ensembles of ultracold atoms. Apart from being of quintessential importance to validating some of the foundational principles of quantum mechanics in new realms, controlled generation of large-scale entangled systems is important for harnessing such systems for the development of future quantum devices, as well as for enabling new insights into the unification of quantum theory with gravity.
Macroscopic entanglement and Bell inequality tests with ultra-cold atoms
The project addresses an open fundamental question in physics of how quantum mechanics applies to systems of mesoscopic and macroscopic sizes. The project will provide theoretical guidance to Australia’s research effort to experimentally demonstrate - for the first time - quantum entanglement between large, spatially separated ensembles of ultracold atoms. Apart from being of quintessential importance to validating some of the foundational principles of quantum mechanics in new realms, controlled generation of large-scale entangled systems is important for harnessing such systems for the development of future quantum devices, as well as for enabling new insights into the unification of quantum theory with gravity.